Full Table Scans on Auto Ship Confirm Report (WSHRDASC) Causing

Severe performance issue with Auto Ship Confirm report WSHRDASC.
From the statspack reports, a single sql statement that iscurrently consuming approximately 50% of all physical disk I/O.
2 full table scans coming from this problem query :-
Rows Row Source Operation
SORT ORDER BY
NESTED LOOPS OUTER
NESTED LOOPS
NESTED LOOPS OUTER
NESTED LOOPS OUTER
NESTED LOOPS OUTER
NESTED LOOPS OUTER
NESTED LOOPS OUTER
TABLE ACCESS FULL WSH_NEW_DELIVERIES
TABLE ACCESS BY INDEX ROWID HZ_CUST_ACCOUNTS
INDEX UNIQUE SCAN HZ_CUST_ACCOUNTS_U1 (object id 81392)
TABLE ACCESS BY INDEX ROWID HZ_PARTIES
INDEX UNIQUE SCAN HZ_PARTIES_U1 (object id 172682)
TABLE ACCESS BY INDEX ROWID WSH_EXCEPTIONS
INDEX RANGE SCAN WSH_EXCEPTIONS_N9 (object id 133587)
TABLE ACCESS BY INDEX ROWID WSH_DELIVERY_LEGS
INDEX RANGE SCAN WSH_DELIVERY_LEGS_N1 (object id 46224)
TABLE ACCESS BY INDEX ROWID WSH_DOCUMENT_INSTANCES
INDEX RANGE SCAN WSH_DOCUMENT_INSTANCES_N1 (object id 46405)
TABLE ACCESS FULL WSH_PICKING_BATCHES
TABLE ACCESS BY INDEX ROWID FND_LOOKUP_VALUES
INDEX RANGE SCAN FND_LOOKUP_VALUES_U1 (object id 34010)
Please help i have applied one patch for this issue Patch 5531283. Then also same issue

Hi;
WHat is your EBS version?
If note Full Table Scans on Auto Ship Confirm Report (WSHRDASC) Causing Performance Issues [ID 393014.1] doesnt help than I suggest rise SR
Regard
Helios

Similar Messages

  • "db file scattered read" too high and Query going for full table scan-Why ?

    Hi,
    I had a big table of around 200mb and had a index on it.
    In my query I am using the where clause which has to use the
    index. I am neither using any not null condition
    nor using any function on the index fields.
    Still my query is not using the index.
    It is going for full table scan.
    Also the statspack report is showing the
    "db file scattered read" too high.
    Can any body help and suggest me why this is happenning.
    Also tell me the possible solution for it.
    Thanks
    Arun Tayal

    "db file scattered read" are physical reads/multi block reads. This wait occurs when the session reading data blocks from disk and writing into the memory.
    Take the execution plan of the query and see what is wrong and why the index is not being used.
    However, FTS are not always bad. By the way, what is your db_block_size and db_file_multiblock_read_count values?
    If those values are set to high, Optimizer always favour FTS thinking that reading multiblock is always faster than single reads (index scans).
    Dont see oracle not using index, just find out why oracle is not using index. Use the INDEX hint to force optimizer to use index. Take the execution with/witout index and compare the cardinality,cost and of course, logical reads.
    Jaffar
    Message was edited by:
    The Human Fly

  • Select statement in a function does Full Table Scan

    All,
    I have been coding a stored procedure that writes 38K rows in less than a minute. If I add another column which requires call to a package and 4 functions within that package, it runs for about 4 hours. I have confirmed that due to problems in one of the functions, the code does full table scans. The package and all of its functions were written by other contractors who have been long gone.
    Please note that case_number_in (VARCHAR2) and effective_date_in (DATE) are parameters sent to the problem function and I have verified through TOAD’s debugger that their values are correct.
    Table named ps2_benefit_register has over 40 million rows but case_number is an index for that table.
    Table named ps1_case_fs has more than 20 million rows but also uses case_number as an index.
    Select #1 – causes full table scan runs and writes 38K rows in a couple of hours.
    {case}
    SELECT max(a2.application_date)
    INTO l_app_date
    FROM dwfssd.ps2_benefit_register a1, dwfssd.ps2_case_fs a2
    WHERE a2.case_number = case_number_in and
    a1.case_number = a2.case_number and
    a2.application_date <= effective_date_in and
    a1.DOCUMENT_TYPE = 'F';
    {case}
    Select #2 – runs – hard coding values makes the code to write the same 38K rows in a few minutes.
    {case}
    SELECT max(a2.application_date)
    INTO l_app_date
    FROM dwfssd.ps2_benefit_register a1, dwfssd.ps2_case_fs a2
    WHERE a2.case_number = 'A006438' and
    a1.case_number = a2.case_number and
    a2.application_date <= '01-Apr-2009' and
    a1.DOCUMENT_TYPE = 'F';
    {case}
    Why using the values in the passed parameter in the first select statement causes full table scan?
    Thank you for your help,
    Seyed
    Edited by: user11117178 on Jul 30, 2009 6:22 AM
    Edited by: user11117178 on Jul 30, 2009 6:23 AM
    Edited by: user11117178 on Jul 30, 2009 6:24 AM

    Hello Dan,
    Thank you for your input. The function is not determinsitic, therefore, I am providing you with the explain plan. By version number, if you are refering to the Database version, we are running 10g.
    PLAN_TABLE_OUTPUT
    Plan hash value: 2132048964
    | Id  | Operation                     | Name                    | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
    |   0 | SELECT STATEMENT              |                         |   324K|    33M|  3138   (5)| 00:00:38 |       |       |
    |*  1 |  HASH JOIN                    |                         |   324K|    33M|  3138   (5)| 00:00:38 |       |       |
    |   2 |   BITMAP CONVERSION TO ROWIDS |                         |     3 |     9 |     1   (0)| 00:00:01 |       |       |
    |*  3 |    BITMAP INDEX FAST FULL SCAN| IDX_PS2_ACTION_TYPES    |       |       |            |          |       |       |
    |   4 |   PARTITION RANGE ITERATOR    |                         |   866K|    87M|  3121   (4)| 00:00:38 |   154 |   158 |
    |   5 |    TABLE ACCESS FULL          | PS2_FS_TRANSACTION_FACT |   866K|    87M|  3121   (4)| 00:00:38 |   154 |   158 |
    Predicate Information (identified by operation id):
       1 - access("AL1"."ACTION_TYPE_ID"="AL2"."ACTION_TYPE_ID")
       3 - filter("AL2"."ACTION_TYPE"='1' OR "AL2"."ACTION_TYPE"='2' OR "AL2"."ACTION_TYPE"='S')
    Thank you very much,
    Seyed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

  • Preventing Discoverer using Full Table Scans with Decode in a View

    Hi Forum,
    Hope you are can help, it involves a performance issues when creating a Report / Query in Discoverer.
    I have a Discoverer Report that currently takes less than 5 seconds to run. After I add a condition to bring back Batch Status that = ‘Posted’ we cancelled the query after reaching 20 minutes as this is way too long. If I remove the condition the query time goes back to less than 5 seconds. Changing the condition to Batch Status that = ‘Unposted’ returns the query in seconds.
    I’ve been doing some digging and have found the database view that is linked to the Journal Batches folder in Discoverer. See at end of post.
    I think the problem is with the column using DECODE. When querying the column in TOAD the value of ‘P’ is returned. But in discoverer the condition is done on the value ‘Posted’. I’m not too sure how DECODE works, but think this could be the causing some sort of issue with Full Table Scans.
    Any idea how do we get around this?
    SELECT
    JOURNAL_BATCH1.JE_BATCH_ID,
    JOURNAL_BATCH1.NAME,
    JOURNAL_BATCH1.SET_OF_BOOKS_ID,
    GL_SET_OF_BOOKS.NAME,
    DECODE( JOURNAL_BATCH1.STATUS,
    '+', 'Unable to validate or create CTA',
    '+*', 'Was unable to validate or create CTA',
    '-','Invalid or inactive rounding differences account in journal entry',
    '-*', 'Modified invalid or inactive rounding differences account in journal entry',
    '<', 'Showing sequence assignment failure',
    '<*', 'Was showing sequence assignment failure',
    '>', 'Showing cutoff rule violation',
    '>*', 'Was showing cutoff rule violation',
    'A', 'Journal batch failed funds reservation',
    'A*', 'Journal batch previously failed funds reservation',
    'AU', 'Showing batch with unopened period',
    'B', 'Showing batch control total violation',
    'B*', 'Was showing batch control total violation',
    'BF', 'Showing batch with frozen or inactive budget',
    'BU', 'Showing batch with unopened budget year',
    'C', 'Showing unopened reporting period',
    'C*', 'Was showing unopened reporting period',
    'D', 'Selected for posting to an unopened period',
    'D*', 'Was selected for posting to an unopened period',
    'E', 'Showing no journal entries for this batch',
    'E*', 'Was showing no journal entries for this batch',
    'EU', 'Showing batch with unopened encumbrance year',
    'F', 'Showing unopened reporting encumbrance year',
    'F*', 'Was showing unopened reporting encumbrance year',
    'G', 'Showing journal entry with invalid or inactive suspense account',
    'G*', 'Was showing journal entry with invalid or inactive suspense account',
    'H', 'Showing encumbrance journal entry with invalid or inactive reserve account',
    'H*', 'Was showing encumbrance journal entry with invalid or inactive reserve account',
    'I', 'In the process of being posted',
    'J', 'Showing journal control total violation',
    'J*', 'Was showing journal control total violation',
    'K', 'Showing unbalanced intercompany journal entry',
    'K*', 'Was showing unbalanced intercompany journal entry',
    'L', 'Showing unbalanced journal entry by account category',
    'L*', 'Was showing unbalanced journal entry by account category',
    'M', 'Showing multiple problems preventing posting of batch',
    'M*', 'Was showing multiple problems preventing posting of batch',
    'N', 'Journal produced error during intercompany balance processing',
    'N*', 'Journal produced error during intercompany balance processing',
    'O', 'Unable to convert amounts into reporting currency',
    'O*', 'Was unable to convert amounts into reporting currency',
    'P', 'Posted',
    'Q', 'Showing untaxed journal entry',
    'Q*', 'Was showing untaxed journal entry',
    'R', 'Showing unbalanced encumbrance entry without reserve account',
    'R*', 'Was showing unbalanced encumbrance entry without reserve account',
    'S', 'Already selected for posting',
    'T', 'Showing invalid period and conversion information for this batch',
    'T*', 'Was showing invalid period and conversion information for this batch',
    'U', 'Unposted',
    'V', 'Journal batch is unapproved',
    'V*', 'Journal batch was unapproved',
    'W', 'Showing an encumbrance journal entry with no encumbrance type',
    'W*', 'Was showing an encumbrance journal entry with no encumbrance type',
    'X', 'Showing an unbalanced journal entry but suspense not allowed',
    'X*', 'Was showing an unbalanced journal entry but suspense not allowed',
    'Z', 'Showing invalid journal entry lines or no journal entry lines',
    'Z*', 'Was showing invalid journal entry lines or no journal entry lines', NULL ),
    DECODE( JOURNAL_BATCH1.ACTUAL_FLAG, 'A', 'Actual', 'B', 'Budget', 'E', 'Encumbrance', NULL ),
    JOURNAL_BATCH1.DEFAULT_PERIOD_NAME,
    JOURNAL_BATCH1.POSTED_DATE,
    JOURNAL_BATCH1.DATE_CREATED,
    JOURNAL_BATCH1.DESCRIPTION,
    DECODE( JOURNAL_BATCH1.AVERAGE_JOURNAL_FLAG, 'N', 'Standard', 'Y', 'Average', NULL ),
    DECODE( JOURNAL_BATCH1.BUDGETARY_CONTROL_STATUS, 'F', 'Failed', 'I', 'In Process', 'N', 'N/A', 'P', 'Passed', 'R', 'Required', NULL ),
    DECODE( JOURNAL_BATCH1.APPROVAL_STATUS_CODE, 'A', 'Approved', 'I', 'In Process', 'J', 'Rejected', 'R', 'Required', 'V','Validation Failed','Z', 'N/A',NULL ),
    JOURNAL_BATCH1.CONTROL_TOTAL,
    JOURNAL_BATCH1.RUNNING_TOTAL_DR,
    JOURNAL_BATCH1.RUNNING_TOTAL_CR,
    JOURNAL_BATCH1.RUNNING_TOTAL_ACCOUNTED_DR,
    JOURNAL_BATCH1.RUNNING_TOTAL_ACCOUNTED_CR,
    JOURNAL_BATCH1.PARENT_JE_BATCH_ID,
    JOURNAL_BATCH2.NAME
    FROM
    GL_JE_BATCHES JOURNAL_BATCH1,
    GL_JE_BATCHES JOURNAL_BATCH2,
    GL_SETS_OF_BOOKS
    GL_SET_OF_BOOKS
    WHERE
    JOURNAL_BATCH1.PARENT_JE_BATCH_ID = JOURNAL_BATCH2.JE_BATCH_ID (+) AND
    JOURNAL_BATCH1.SET_OF_BOOKS_ID = GL_SET_OF_BOOKS.SET_OF_BOOKS_ID AND
    GL_SECURITY_PKG.VALIDATE_ACCESS( JOURNAL_BATCH1.SET_OF_BOOKS_ID ) = 'TRUE' WITH READ ONLY
    Thanks,
    Lance

    Discoverer created it's own SQL.
    Please see below the SQL Inspector Plan:
    Before Condition
    SELECT STATEMENT
    SORT GROUP BY
    VIEW SYS
    SORT GROUP BY
    NESTED LOOPS OUTER
    NESTED LOOPS OUTER
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS OUTER
    NESTED LOOPS OUTER
    NESTED LOOPS
    NESTED LOOPS OUTER
    NESTED LOOPS OUTER
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    TABLE ACCESS BY INDEX ROWID GL.GL_CODE_COMBINATIONS
    AND-EQUAL
    INDEX RANGE SCAN GL.GL_CODE_COMBINATIONS_N2
    INDEX RANGE SCAN GL.GL_CODE_COMBINATIONS_N1
    TABLE ACCESS BY INDEX ROWID APPLSYS.FND_FLEX_VALUES
    INDEX RANGE SCAN APPLSYS.FND_FLEX_VALUES_N1
    TABLE ACCESS BY INDEX ROWID APPLSYS.FND_FLEX_VALUE_SETS
    INDEX UNIQUE SCAN APPLSYS.FND_FLEX_VALUE_SETS_U1
    TABLE ACCESS BY INDEX ROWID APPLSYS.FND_FLEX_VALUES_TL
    INDEX UNIQUE SCAN APPLSYS.FND_FLEX_VALUES_TL_U1
    INDEX RANGE SCAN APPLSYS.FND_FLEX_VALUE_NORM_HIER_U1
    TABLE ACCESS BY INDEX ROWID GL.GL_JE_LINES
    INDEX RANGE SCAN GL.GL_JE_LINES_N1
    INDEX UNIQUE SCAN GL.GL_JE_HEADERS_U1
    INDEX UNIQUE SCAN GL.GL_SETS_OF_BOOKS_U2
    TABLE ACCESS BY INDEX ROWID GL.GL_JE_HEADERS
    INDEX UNIQUE SCAN GL.GL_JE_HEADERS_U1
    INDEX UNIQUE SCAN GL.GL_DAILY_CONVERSION_TYPES_U1
    TABLE ACCESS BY INDEX ROWID GL.GL_JE_SOURCES_TL
    INDEX UNIQUE SCAN GL.GL_JE_SOURCES_TL_U1
    INDEX UNIQUE SCAN GL.GL_JE_CATEGORIES_TL_U1
    INDEX UNIQUE SCAN GL.GL_JE_HEADERS_U1
    INDEX UNIQUE SCAN GL.GL_JE_HEADERS_U1
    INDEX UNIQUE SCAN GL.GL_JE_BATCHES_U1
    INDEX UNIQUE SCAN GL.GL_BUDGET_VERSIONS_U1
    INDEX UNIQUE SCAN GL.GL_ENCUMBRANCE_TYPES_U1
    INDEX UNIQUE SCAN GL.GL_SETS_OF_BOOKS_U2
    TABLE ACCESS BY INDEX ROWID GL.GL_JE_BATCHES
    INDEX UNIQUE SCAN GL.GL_JE_BATCHES_U1
    INDEX UNIQUE SCAN GL.GL_SETS_OF_BOOKS_U2
    INDEX UNIQUE SCAN GL.GL_JE_BATCHES_U1
    TABLE ACCESS BY INDEX ROWID GL.GL_PERIODS
    INDEX RANGE SCAN GL.GL_PERIODS_U1
    After Condition
    SELECT STATEMENT
    SORT GROUP BY
    VIEW SYS
    SORT GROUP BY
    NESTED LOOPS
    NESTED LOOPS OUTER
    NESTED LOOPS OUTER
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS OUTER
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS OUTER
    NESTED LOOPS
    NESTED LOOPS OUTER
    NESTED LOOPS
    NESTED LOOPS
    NESTED LOOPS OUTER
    NESTED LOOPS
    TABLE ACCESS FULL GL.GL_JE_BATCHES
    INDEX UNIQUE SCAN GL.GL_SETS_OF_BOOKS_U2
    INDEX UNIQUE SCAN GL.GL_JE_BATCHES_U1
    TABLE ACCESS BY INDEX ROWID GL.GL_JE_HEADERS
    INDEX RANGE SCAN GL.GL_JE_HEADERS_N1
    INDEX UNIQUE SCAN GL.GL_SETS_OF_BOOKS_U2
    INDEX UNIQUE SCAN GL.GL_ENCUMBRANCE_TYPES_U1
    INDEX UNIQUE SCAN GL.GL_DAILY_CONVERSION_TYPES_U1
    INDEX UNIQUE SCAN GL.GL_BUDGET_VERSIONS_U1
    TABLE ACCESS BY INDEX ROWID GL.GL_JE_SOURCES_TL
    INDEX UNIQUE SCAN GL.GL_JE_SOURCES_TL_U1
    INDEX UNIQUE SCAN GL.GL_JE_CATEGORIES_TL_U1
    INDEX UNIQUE SCAN GL.GL_JE_BATCHES_U1
    TABLE ACCESS BY INDEX ROWID GL.GL_JE_LINES
    INDEX RANGE SCAN GL.GL_JE_LINES_U1
    INDEX UNIQUE SCAN GL.GL_SETS_OF_BOOKS_U2
    TABLE ACCESS BY INDEX ROWID GL.GL_CODE_COMBINATIONS
    INDEX UNIQUE SCAN GL.GL_CODE_COMBINATIONS_U1
    TABLE ACCESS BY INDEX ROWID GL.GL_PERIODS
    INDEX RANGE SCAN GL.GL_PERIODS_U1
    TABLE ACCESS BY INDEX ROWID APPLSYS.FND_FLEX_VALUES
    INDEX RANGE SCAN APPLSYS.FND_FLEX_VALUES_N1
    INDEX RANGE SCAN APPLSYS.FND_FLEX_VALUE_NORM_HIER_U1
    TABLE ACCESS BY INDEX ROWID APPLSYS.FND_FLEX_VALUES_TL
    INDEX UNIQUE SCAN APPLSYS.FND_FLEX_VALUES_TL_U1
    TABLE ACCESS BY INDEX ROWID APPLSYS.FND_FLEX_VALUE_SETS
    INDEX UNIQUE SCAN APPLSYS.FND_FLEX_VALUE_SETS_U1
    INDEX UNIQUE SCAN GL.GL_JE_HEADERS_U1
    INDEX UNIQUE SCAN GL.GL_JE_HEADERS_U1
    INDEX UNIQUE SCAN GL.GL_JE_HEADERS_U1
    _________________________________

  • Tables in subquery resulting in full table scans

    Hi,
    This is related to a p1 bug 13009447. Customer recently upgraded to 10G. Customer reported this type of problem for the second time.
    Problem Description:
    All the tables in sub-query are resulting in full table scans and hence are executing for hours.
    Here is the query
    SELECT /*+ PARALLEL*/
    act.assignment_action_id
    , act.assignment_id
    , act.tax_unit_id
    , as1.person_id
    , as1.effective_start_date
    , as1.primary_flag
    FROM pay_payroll_actions pa1
    , pay_population_ranges pop
    , per_periods_of_service pos
    , per_all_assignments_f as1
    , pay_assignment_actions act
    , pay_payroll_actions pa2
    , pay_action_classifications pcl
    , per_all_assignments_f as2
    WHERE pa1.payroll_action_id = :b2
    AND pa2.payroll_id = pa1.payroll_id
    AND pa2.effective_date
    BETWEEN pa1.start_date
    AND pa1.effective_date
    AND act.payroll_action_id = pa2.payroll_action_id
    AND act.action_status IN ('C', 'S')
    AND pcl.classification_name = :b3
    AND pa2.consolidation_set_id = pa1.consolidation_set_id
    AND pa2.action_type = pcl.action_type
    AND nvl (pa2.future_process_mode, 'Y') = 'Y'
    AND as1.assignment_id = act.assignment_id
    AND pa1.effective_date
    BETWEEN as1.effective_start_date
    AND as1.effective_end_date
    AND as2.assignment_id = act.assignment_id
    AND pa2.effective_date
    BETWEEN as2.effective_start_date
    AND as2.effective_end_date
    AND as2.payroll_id = as1.payroll_id
    AND pos.period_of_service_id = as1.period_of_service_id
    AND pop.payroll_action_id = :b2
    AND pop.chunk_number = :b1
    AND pos.person_id = pop.person_id
    AND (
    as1.payroll_id = pa1.payroll_id
    OR pa1.payroll_id IS NULL
    AND NOT EXISTS
    SELECT /*+ PARALLEL*/ NULL
    FROM pay_assignment_actions ac2
    , pay_payroll_actions pa3
    , pay_action_interlocks int
    WHERE int.locked_action_id = act.assignment_action_id
    AND ac2.assignment_action_id = int.locking_action_id
    AND pa3.payroll_action_id = ac2.payroll_action_id
    AND pa3.action_type IN ('P', 'U')
    AND NOT EXISTS
    SELECT /*+ PARALLEL*/
    NULL
    FROM per_all_assignments_f as3
    , pay_assignment_actions ac3
    WHERE :b4 = 'N'
    AND ac3.payroll_action_id = pa2.payroll_action_id
    AND ac3.action_status NOT IN ('C', 'S')
    AND as3.assignment_id = ac3.assignment_id
    AND pa2.effective_date
    BETWEEN as3.effective_start_date
    AND as3.effective_end_date
    AND as3.person_id = as2.person_id
    ORDER BY as1.person_id
    , as1.primary_flag DESC
    , as1.effective_start_date
    , act.assignment_id
    FOR UPDATE OF as1.assignment_id
    , pos.period_of_service_id
    Here is the execution plan for this query. We tried adding hints in sub-query to force indexes to pick-up but it is still doing Full table scans.
    Suspecting some db parameter which is causing this issue.
    In the
    - Full table scans on tables in the first sub-query
    PAY_PAYROLL_ACTIONS, PAY_ASSIGNMENT_ACTIONS, PAY_ACTION_INTERLOCKS
    - Full table scans on tables in Second sub-query
    PER_ALL_ASSIGNMENTS_F PAY_ASSIGNMENT_ACTIONS
    call count cpu elapsed disk query current rows
    Parse 1 0.00 0.00 0 0 0 0
    Execute 29 398.80 2192.99 238706 4991924 2383 0
    Fetch 1136 378.38 1921.39 0 4820511 0 1108
    total 1166 777.19 4114.38 238706 9812435 2383 1108
    Misses in library cache during parse: 1
    Misses in library cache during execute: 1
    Optimizer mode: ALL_ROWS
    Parsing user id: 41 (APPS) (recursive depth: 1)
    Rows Execution Plan
    0 SELECT STATEMENT MODE: ALL_ROWS
    0 FOR UPDATE
    0 PX COORDINATOR
    0 PX SEND (QC (ORDER)) OF ':TQ10009' [:Q1009]
    0 SORT (ORDER BY) [:Q1009]
    0 PX RECEIVE [:Q1009]
    0 PX SEND (RANGE) OF ':TQ10008' [:Q1008]
    0 HASH JOIN (ANTI BUFFERED) [:Q1008]
    0 PX RECEIVE [:Q1008]
    0 PX SEND (HASH) OF ':TQ10006' [:Q1006]
    0 BUFFER (SORT) [:Q1006]
    0 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'PER_ALL_ASSIGNMENTS_F' (TABLE) [:Q1006]
    0 NESTED LOOPS [:Q1006]
    0 NESTED LOOPS [:Q1006]
    0 NESTED LOOPS [:Q1006]
    0 HASH JOIN (ANTI) [:Q1006]
    0 BUFFER (SORT) [:Q1006]
    0 PX RECEIVE [:Q1006]
    0 PX SEND (HASH) OF ':TQ10002'
    0 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'PAY_ASSIGNMENT_ACTIONS' (TABLE)
    0 NESTED LOOPS
    0 NESTED LOOPS
    0 NESTED LOOPS
    0 NESTED LOOPS
    0 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'PAY_PAYROLL_ACTIONS' (TABLE)
    0 INDEX MODE: ANALYZED (UNIQUE SCAN) OF 'PAY_PAYROLL_ACTIONS_PK' (INDEX (UNIQUE)
    0 INDEX MODE: ANALYZED (RANGE SCAN) OF 'PAY_POPULATION_RANGES_N4' (INDEX)
    0 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'PER_PERIODS_OF_SERVICE' (TABLE)
    0 INDEX MODE: ANALYZED (RANGE SCAN) OF 'PER_PERIODS_OF_SERVICE_N3' (INDEX)
    0 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'PER_ALL_ASSIGNMENTS_F' (TABLE)
    0 INDEX MODE: ANALYZED (RANGE SCAN) OF 'PER_ASSIGNMENTS_N4' (INDEX)
    0 INDEX MODE: ANALYZED (RANGE SCAN) OF 'PAY_ASSIGNMENT_ACTIONS_N51' (INDEX)
    0 PX RECEIVE [:Q1006]
    0 PX SEND (HASH) OF ':TQ10005' [:Q1005]
    0 VIEW OF 'VW_SQ_1' (VIEW) [:Q1005]
    0 HASH JOIN [:Q1005]
    0 BUFFER (SORT) [:Q1005]
    0 PX RECEIVE [:Q1005]
    0 PX SEND (BROADCAST) OF ':TQ10000'
    0 TABLE ACCESS MODE: ANALYZED (FULL) OF 'PAY_PAYROLL_ACTIONS' (TABLE)
    0 HASH JOIN [:Q1005]
    0 PX RECEIVE [:Q1005]
    0 PX SEND (HASH) OF ':TQ10004' [:Q1004]
    0 PX BLOCK (ITERATOR) [:Q1004]
    0 TABLE ACCESS MODE: ANALYZED (FULL) OF 'PAY_ASSIGNMENT_ACTIONS' (TABLE) [:Q1004]
    0 BUFFER (SORT) [:Q1005]
    0 PX RECEIVE [:Q1005]
    0 PX SEND (HASH) OF ':TQ10001'
    0 TABLE ACCESS MODE: ANALYZED (FULL) OF 'PAY_ACTION_INTERLOCKS' (TABLE)
    0 TABLE ACCESS MODE: ANALYZED (BY INDEX ROWID) OF 'PAY_PAYROLL_ACTIONS' (TABLE) [:Q1006]
    0 INDEX MODE: ANALYZED (UNIQUE SCAN) OF 'PAY_PAYROLL_ACTIONS_PK' (INDEX (UNIQUE)) [:Q1006]
    0 INDEX MODE: ANALYZED (UNIQUE SCAN) OF 'PAY_ACTION_CLASSIFICATIONS_PK' (INDEX (UNIQUE))[:Q1006]
    0 INDEX MODE: ANALYZED (RANGE SCAN) OF 'PER_ASSIGNMENTS_F_PK' (INDEX (UNIQUE)) [:Q1006]
    0 PX RECEIVE [:Q1008]
    0 PX SEND (HASH) OF ':TQ10007' [:Q1007]
    0 VIEW OF 'VW_SQ_2' (VIEW) [:Q1007]
    0 FILTER [:Q1007]
    0 HASH JOIN [:Q1007]
    0 BUFFER (SORT) [:Q1007]
    0 PX RECEIVE [:Q1007]
    0 PX SEND (BROADCAST) OF ':TQ10003'
    0 TABLE ACCESS MODE: ANALYZED (FULL) OF 'PER_ALL_ASSIGNMENTS_F' (TABLE)
    0 PX BLOCK (ITERATOR) [:Q1007]
    0 TABLE ACCESS MODE: ANALYZED (FULL) OF 'PAY_ASSIGNMENT_ACTIONS' (TABLE) [:Q1007]
    Elapsed times include waiting on following events:
    Event waited on Times Max. Wait Total Waited
    ---------------------------------------- Waited ---------- ------------
    enq: KO - fast object checkpoint 32 0.02 0.12
    os thread startup 8 0.02 0.19
    PX Deq: Join ACK 198 0.00 0.04
    PX Deq Credit: send blkd 167116 1.95 1103.72
    PX Deq Credit: need buffer 327389 1.95 266.30
    PX Deq: Parse Reply 148 0.01 0.03
    PX Deq: Execute Reply 11531 1.95 1901.50
    PX qref latch 23060 0.00 0.60
    db file sequential read 108199 0.17 22.11
    db file scattered read 9272 0.19 51.74
    PX Deq: Table Q qref 78 0.00 0.03
    PX Deq: Signal ACK 1165 0.10 10.84
    enq: PS - contention 73 0.00 0.00
    reliable message 27 0.00 0.00
    latch free 218 0.00 0.01
    latch: session allocation 11 0.00 0.00
    Thanks in advance
    Suresh PV

    Hi,
    welcome,
    how is the query performing if you delete all the hints for PARALLEL, because most of the waits are related to waits on Parallel.
    Herald ten Dam
    http://htendam.wordpress.com
    PS. Use "{code}" for showing your code and explain plans, it looks nicer

  • Why does not  a query go by index but FULL TABLE SCAN

    I have two tables;
    table 1 has 1400 rwos and more than 30 columns , one of them is named as 'site_code' , a index was created on this column;
    table 2 has more 150 rows than 20 column , this primary key is 'site_code' also.
    the two tables were analysed by dbms_stats.gather_table()...
    when I run the explain for the 2 sqls below:
    select * from table1 where site_code='XXXXXXXXXX';
    select * from table1 where site_code='XXXXXXXXXX';
    certainly the oracle explain report show that 'Index scan'
    but the problem raised that
    I try to explain the sql
    select *
    from table1,table2
    where 1.'site_code'=2.'site_code'
    the explain report that :
    select .....
    FULL Table1 Scan
    FULL Table2 Scan
    why......

    Nikolay Ivankin  wrote:
    BluShadow wrote:
    Nikolay Ivankin  wrote:
    Try to use hint, but I really doubt it will be faster.No, using hints should only be advised when investigating an issue, not recommended for production code, as it assumes that, as a developer, you know better than the Oracle Optimizer how the data is distributed in the data files, and how the data is going to grow and change over time, and how best to access that data for performance etc.Yes, you are absolutly right. But aren't we performing such an investigation, are we? ;-)The way you wrote it, made it sound that a hint would be the solution, not just something for investigation.
    select * from .. always performs full scan, so limit your query.No, select * will not always perform a full scan, that's just selecting all the columns.
    A select without a where clause or that has a where clause that has low selectivity will result in full table scans.But this is what I have ment.But not what you said.

  • Problem of full table scan on a partitioned table

    hi all
    There is a table called "si_sync_operation" that have 171040 number of rows.
    I partitioned that table into a new table called "si_sync_operation_par" with 7 partitoins.
    I issued the following statements
    SELECT * FROM si_sync_operation_par.
    SELECT * FROM si_sync_operation.
    The explain plan show that the cost of the first statement is 1626 and that of the second statments is 1810.
    The "cost" of full table scan on partitioned table is lower than the that of non-partitioned table.That's fine.
    But the "Bytes" of full table scan on partitioned table is 5761288680 and that of the non-partitioned table is 263743680.
    Why full table scan on partitioned table access more bytes than non-partitioned table?
    And how could a statment that access more bytes results a lower cost?
    Thank u very much

    As Hemant metioned bytes reported are approximate number of bytes. As far as Cost is concerned, according to Tom its just a number and we should not compare queries by their cost. (search asktom.oracle.com for more information)
    SQL> drop table non_part purge;
    Table dropped.
    SQL> drop table part purge;
    Table dropped.
    SQL>
    SQL> CREATE TABLE non_part
      2        (id  NUMBER(5),
      3         dt    DATE);
    Table created.
    SQL>
    SQL> CREATE TABLE part
      2        (id  NUMBER(5),
      3         dt    DATE)
      4         PARTITION BY RANGE(dt)
      5         (
      6         PARTITION part1_jan2008 VALUES LESS THAN(TO_DATE('01/02/2008','DD/MM/YYYY')),
      7         PARTITION part2_feb2008 VALUES LESS THAN(TO_DATE('01/03/2008','DD/MM/YYYY')),
      8         PARTITION part3_mar2008 VALUES LESS THAN(TO_DATE('01/04/2008','DD/MM/YYYY')),
      9         PARTITION part4_apr2008 VALUES LESS THAN(TO_DATE('01/05/2008','DD/MM/YYYY')),
    10         PARTITION part5_may2008 VALUES LESS THAN(TO_DATE('01/06/2008','DD/MM/YYYY'))
    11       );
    Table created.
    SQL>
    SQL>
    SQL> insert into non_part select rownum, trunc(sysdate) - rownum from dual connect by level <= 140;
    140 rows created.
    Execution Plan
    Plan hash value: 1731520519
    | Id  | Operation                     | Name | Rows  | Cost (%CPU)| Time     |
    |   0 | INSERT STATEMENT              |      |     1 |     2   (0)| 00:00:01 |
    |   1 |  COUNT                        |      |       |            |          |
    |*  2 |   CONNECT BY WITHOUT FILTERING|      |       |            |          |
    |   3 |    FAST DUAL                  |      |     1 |     2   (0)| 00:00:01 |
    Predicate Information (identified by operation id):
       2 - filter(LEVEL<=140)
    SQL>
    SQL> insert into part select * from non_part;
    140 rows created.
    Execution Plan
    Plan hash value: 1654070669
    | Id  | Operation         | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
    |   0 | INSERT STATEMENT  |          |   140 |  3080 |     3   (0)| 00:00:01 |
    |   1 |  TABLE ACCESS FULL| NON_PART |   140 |  3080 |     3   (0)| 00:00:01 |
    Note
       - dynamic sampling used for this statement
    SQL>
    SQL> commit;
    Commit complete.
    SQL>
    SQL> set line 10000
    SQL> set autotrace traceonly exp
    SQL> select * from non_part;
    Execution Plan
    Plan hash value: 1654070669
    | Id  | Operation         | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
    |   0 | SELECT STATEMENT  |          |   140 |  3080 |     3   (0)| 00:00:01 |
    |   1 |  TABLE ACCESS FULL| NON_PART |   140 |  3080 |     3   (0)| 00:00:01 |
    Note
       - dynamic sampling used for this statement
    SQL> select * from part;
    Execution Plan
    Plan hash value: 3392317243
    | Id  | Operation           | Name | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
    |   0 | SELECT STATEMENT    |      |   140 |  3080 |     9   (0)| 00:00:01 |       |       |
    |   1 |  PARTITION RANGE ALL|      |   140 |  3080 |     9   (0)| 00:00:01 |     1 |     5 |
    |   2 |   TABLE ACCESS FULL | PART |   140 |  3080 |     9   (0)| 00:00:01 |     1 |     5 |
    Note
       - dynamic sampling used for this statement
    SQL>
    SQL> exec dbms_stats.gather_table_stats(user, 'non_part');
    PL/SQL procedure successfully completed.
    SQL> exec dbms_stats.gather_table_stats(user, 'part');
    PL/SQL procedure successfully completed.
    SQL>
    SQL>
    SQL> select * from non_part;
    Execution Plan
    Plan hash value: 1654070669
    | Id  | Operation         | Name     | Rows  | Bytes | Cost (%CPU)| Time     |
    |   0 | SELECT STATEMENT  |          |   140 |  1540 |     3   (0)| 00:00:01 |
    |   1 |  TABLE ACCESS FULL| NON_PART |   140 |  1540 |     3   (0)| 00:00:01 |
    SQL> select * from part;
    Execution Plan
    Plan hash value: 3392317243
    | Id  | Operation           | Name | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
    |   0 | SELECT STATEMENT    |      |   140 |  1540 |     9   (0)| 00:00:01 |       |       |
    |   1 |  PARTITION RANGE ALL|      |   140 |  1540 |     9   (0)| 00:00:01 |     1 |     5 |
    |   2 |   TABLE ACCESS FULL | PART |   140 |  1540 |     9   (0)| 00:00:01 |     1 |     5 |
    SQL>After analyzing the tables, notice that the Bytes column has changed value

  • Prompt on DATE forces FULL TABLE SCAN

    When using a prompt on a datetime field OBIEE sends a SQL to the Database with the TIMESTAMP COMMAND.
    Due to Timestamp the Oracle database does a Full Table Scan. The field ATIST is a date with time on the physical database.
    By Default ATIST was configured as TIMESTAMP in the rpd physical layer. The SQL request is sent to a Oracle 10 Database.
    That is the query sent to the database:
    -------------------- Sending query to database named PlantControl1 (id: <<10167>>):
    select distinct T1471.ATIST as c1,
    T1471.GUTMENGEMELD2 as c2
    from
    AGRUECK T1471 /* Fact_ARBEITSGANGMELDUNGEN */
    where ( T1471.ATIST = TIMESTAMP '2005-04-01 13:48:05' )
    order by c1, c2
    The result takes more than half a minute to appear.
    Because BIEE is using "TIMESTAMP" , the database performs a full table scan instead of using the index.
    By using TO_DATE instead of timestamp the result appears after a second.
    select distinct T1471.ATIST, T1471.GUTMENGEMELD2 as c2
    from
    AGRUECK T1471 /* Fact_ARBEITSGANGMELDUNGEN */
    where ( T1471.ATIST = to_date('2005.04.01 13:48:05', 'yyyy.mm.dd hh24:mi:ss') );
    Is there any way resolving the issue?
    PS:When the field ATIST is configured as date at the physical layer the SQL performs well is it uses the command "to_date" instead of "timestamp". But this cuts the time of the date, When it is configured as DATETIME, OBIEE uses TIMESTAMP again.
    What I need is a working date + time field.
    Anybody has encountered a similiar problem?

    To be honest I haven't come across many scenarios where the Time has been important. Most of our reporting stops at Day level.
    What is the real world business question being asked here that requires DayTime?
    Incidentally if you change your datatype on the base table you will see it works fine.
    CREATE TABLE daytime( daytime TIMESTAMP );
    CREATE UNIQUE INDEX dt ON daytime  (daytime)
    SQL> set autotrace traceonly
    SQL> SELECT * FROM daytime
      2  WHERE daytime = TIMESTAMP '2007-04-01 13:00:45';
    no rows selected
    Execution Plan
    Plan hash value: 3985400340
    | Id  | Operation         | Name | Rows  | Bytes | Cost (%CPU)| Time     |
    |   0 | SELECT STATEMENT  |      |     1 |    13 |     1   (0)| 00:00:01 |
    |*  1 |  INDEX UNIQUE SCAN| DT   |     1 |    13 |     1   (0)| 00:00:01 |
    Predicate Information (identified by operation id):
       1 - access("DAYTIME"=TIMESTAMP' 2007-04-01 13:00:45.000000000')
    Statistics
              1  recursive calls
              0  db block gets
              1  consistent gets
              0  physical reads
              0  redo size
            242  bytes sent via SQL*Net to client
            362  bytes received via SQL*Net from client
              1  SQL*Net roundtrips to/from client
              0  sorts (memory)
              0  sorts (disk)
              0  rows processed
    SQL>However if its a date it would appear to do some internal function call which I guess is the source of the problem ...
    | Id  | Operation         | Name    | Rows  | Bytes | Cost (%CPU)| Time     |
    |   0 | SELECT STATEMENT  |         |     1 |     9 |     2   (0)| 00:00:01 |
    |*  1 |  TABLE ACCESS FULL| DAYTIME |     1 |     9 |     2   (0)| 00:00:01 |
    Predicate Information (identified by operation id):
       1 - filter(INTERNAL_FUNCTION("DAYTIME")=TIMESTAMP' 2007-04-01
                  13:00:45.000000000')

  • Locate SQL causes full table scans from Statspack

    Hello,
    In my statspack reports I see a lot of full tables scans (1,425,297)
    How can I locate the query that causes this ?
    stats$sql_plan should fit?
    Oracle is 9i
    Thank you

    >
    How can I locate the query that causes this ?
    It can be hard. One idea is to put comments in queries identifying where they come from, something like
    select /* my_package.my_procedure */ *
      from dual;
    [/code
    The comment should remain with the sql text so various reports showing the sql text should also indicate where the query is]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

  • Full table scans and EUL

    Hi All,
    I am using Discoverer Version 10.1.2.1.
    I have few reports in which tables used in queries (used in Custom folders) go into full table scans inspite of all efforts in tuning.
    I came to know that full table scans also come from the way EUL is built and maintained.
    Can anyone please throw some light on how does EUL and full table scan relate.
    Also one more thing here, which is better to use, Database View on which we can base our folder or writing the complete complex query in the folder.
    Any help in this case will be appreciated.
    Regards,
    Ankur

    Hi,
    Can anyone please throw some light on how does EUL and full table scan relateThe database cost base optimiser processes the SQL that has been generated by Discoverer and creates an execution plan for the SQL. Now the execution plan will contain full table scans if the CBO calculates that FTS will give the best results. The CBO mainly uses the statistics held against the tables and the conditions in the SQL to calculate whether FTS would be better than using an index. The table join conditions are usually defined in the EUL but other conditions are usually in the workbook.
    So there are many factors which control whether the database uses an FTS and only a few of them are affected by how the EUL is built.
    Database View on which we can base our folder or writing the complete complex query in the folderIn general, it is always better to create a database view if that option is available to you. You can control and monitor the SQL in a database view much more easily than using a query in a custom folder.
    Rod West

  • How to Reduce cost of full table scan or remove full table scan while execu

    Dear Experts
    need your help.
    I execute a query and create a explain plan in that plan i found cost of a table is very high (2777) and it was full table scan.
    Please guide me How to Reduce cost of full table scan or remove full table scan while execute the query.
    Thanks

    Need your help to tune this query..
    SELECT DISTINCT ool.org_id, ool.header_id, ooh.order_number, ool.line_id,
    ool.line_number, ool.shipment_number,
    NVL (ool.option_number, -99) option_number, xcl.GROUP_ID,
    xcl.attribute3, xcl.attribute4
    FROM oe_order_headers ooh,
    xxcn_comp_header xch,
    xxcn_comp_lines xcl,
    fnd_lookup_values_vl fvl,
    oe_order_lines ool
    WHERE 1 = 1
    AND ooh.org_id = 1524
    AND xch.src_ref_no = TO_CHAR (ooh.order_number)
    AND xch.src_ref_id = ooh.header_id
    AND xch.org_id = 1524
    AND xcl.header_id = xch.header_id
    AND ool.line_id = xcl.oe_line_id
    AND ool.flow_status_code IN
    ('WWD_SHIPPED',
    'FULFILLED',
    'SHIPPED',
    'CLOSED',
    'RETURNED'
    AND ool.org_id = 1524
    AND ool.header_id = ooh.header_id
    AND xch.org_id = 1524
    AND fvl.lookup_type = 'EMR OIC SOURCE FOR OU'
    AND fvl.tag = '1524'
    AND fvl.description = xch.SOURCE
    AND EXISTS (
    SELECT 1
    FROM oe_order_lines oe
    WHERE oe.header_id = ool.header_id
    AND oe.org_id = 1524
    AND oe.line_number = ool.line_number
    AND oe.ordered_item = ool.ordered_item
    AND oe.shipment_number > ool.shipment_number
    AND NVL (oe.option_number, -99) =
    NVL (ool.option_number,
    -99)
    AND NOT EXISTS (
    SELECT 1
    FROM xxcn_comp_lines xcl2
    WHERE xcl.GROUP_ID = xcl2.GROUP_ID
    AND oe.line_id = oe_line_id))
    call count cpu elapsed disk query current rows
    Parse 1 0.07 0.12 12 25 0 0
    Execute 1 0.00 0.00 0 0 0 0
    Fetch 2 103.03 852.42 176206 4997766 0 12
    total 4 103.10 852.55 176218 4997791 0 12
    In this LIO is very high...can u please help in resolving this performance issue

  • Data Federator Full Table scan

    Hi,
    Is it possible to prevent a Full table scan when creating a join between tables of 2 catalogues in a Data Federator?
    This is seriously hampering the development time within Data Federator Development.
    I am working with IDT Beta to create a Universe based on Multiple Source. The delay is so huge when creating joins that we could revert to Universe Design Tool. I have posted it here as Data Federator gurus will have tweak about IDT as it incorporates DF within itself in BI 4.0.
    Any inputs will be great.. In case this is in the wrong forums, then please move it accordingly.
    VFernandes

    The issue was fixed when the GA was released. This was present in Beta

  • URGENT HELP Required: Solution to avoid Full table scan for a PL/SQL query

    Hi Everyone,
    When I checked the EXPLAIN PLAN for the below SQL query, I saw that Full table scans is going on both the tables TABLE_A and TABLE_B
    UPDATE TABLE_A a
    SET a.current_commit_date =
    (SELECT MAX (b.loading_date)
    FROM TABLE_B b
    WHERE a.sales_order_id = b.sales_order_id
    AND a.sales_order_line_id = b.sales_order_line_id
    AND b.confirmed_qty > 0
    AND b.data_flag IS NULL
    OR b.schedule_line_delivery_date >= '23 NOV 2008')
    Though the TABLE_A is a small table having nearly 1 lakh records, the TABLE_B is a huge table, having nearly 2 and a half crore records.
    I created an Index on the TABLE_B having all its fields used in the WHERE clause. But, still the explain plan is showing FULL TABLE SCAN only.
    When I run the query, it is taking long long time to execute (more than 1 day) and each time I have to kill the session.
    Please please help me in optimizing this.
    Thanks,
    Sudhindra

    Check the instruction again, you're leaving out information we need in order to help you, like optimizer information.
    - Post your exact database version, that is: the result of select * from v$version;
    - Don't use TOAD's execution plan, but use
    SQL> explain plan for <your_query>;
    SQL> select * from table(dbms_xplan.display);(You can execute that in TOAD as well).
    Don't forget you need to use the {noformat}{noformat} tag in order to post formatted code/output/execution plans etc.
    It's also explained in the instruction.
    When was the last time statistics were gathered for table_a and table_b?
    You can find out by issuing the following query:select table_name
    , last_analyzed
    , num_rows
    from user_tables
    where table_name in ('TABLE_A', 'TABLE_B');
    Can you also post the results of these counts;select count(*)
    from table_b
    where confirmed_qty > 0;
    select count(*)
    from table_b
    where data_flag is null;
    select count(*)
    from table_b
    where schedule_line_delivery_date >= /* assuming you're using a date, and not a string*/ to_date('23 NOV 2008', 'dd mon yyyy');

  • How to avoid full Table scan when using Rule based optimizer (Oracle817)

    1. We have a Oracle 8.1.7 DB, and the optimizer_mode is set to "RULE"
    2. There are three indexes on table cm_contract_supply, which is a large table having 28732830 Rows, and average row length 149 Bytes
    COLUMN_NAME INDEX_NAME
    PROGRESS_RECID XAK11CM_CONTRACT_SUPPLY
    COMPANY_CODE XIE1CM_CONTRACT_SUPPLY
    CONTRACT_NUMBER XIE1CM_CONTRACT_SUPPLY
    COUNTRY_CODE XIE1CM_CONTRACT_SUPPLY
    SUPPLY_TYPE_CODE XIE1CM_CONTRACT_SUPPLY
    VERSION_NUMBER XIE1CM_CONTRACT_SUPPLY
    CAMPAIGN_CODE XIF1290CM_CONTRACT_SUPPLY
    COMPANY_CODE XIF1290CM_CONTRACT_SUPPLY
    COUNTRY_CODE XIF1290CM_CONTRACT_SUPPLY
    SUPPLIER_BP_ID XIF801CONTRACT_SUPPLY
    COMMISSION_LETTER_CODE XIF803CONTRACT_SUPPLY
    COMPANY_CODE XIF803CONTRACT_SUPPLY
    COUNTRY_CODE XIF803CONTRACT_SUPPLY
    COMPANY_CODE XPKCM_CONTRACT_SUPPLY
    CONTRACT_NUMBER XPKCM_CONTRACT_SUPPLY
    COUNTRY_CODE XPKCM_CONTRACT_SUPPLY
    SUPPLY_SEQUENCE_NUMBER XPKCM_CONTRACT_SUPPLY
    VERSION_NUMBER XPKCM_CONTRACT_SUPPLY
    3. We are querying the table for a particular contract_number and version_number. We want to avoid full table scan.
    SELECT /*+ INDEX(XAK11CM_CONTRACT_SUPPLY) */
    rowid, pms.cm_contract_supply.*
    FROM pms.cm_contract_supply
    WHERE
    contract_number = '0000000000131710'
    AND version_number = 3;
    However despite of giving hint, query results are fetched after full table scan.
    Execution Plan
    0 SELECT STATEMENT Optimizer=RULE (Cost=1182 Card=1 Bytes=742)
    1 0 TABLE ACCESS (FULL) OF 'CM_CONTRACT_SUPPLY' (Cost=1182 Card=1 Bytes=742)
    4. I have tried giving
    SELECT /*+ FIRST_ROWS + INDEX(XAK11CM_CONTRACT_SUPPLY) */
    rowid, pms.cm_contract_supply.*
    FROM pms.cm_contract_supply
    WHERE
    contract_number = '0000000000131710'
    AND version_number = 3;
    and
    SELECT /*+ CHOOSE + INDEX(XAK11CM_CONTRACT_SUPPLY) */
    rowid, pms.cm_contract_supply.*
    FROM pms.cm_contract_supply
    WHERE
    contract_number = '0000000000131710'
    AND version_number = 3;
    But it does not work.
    Is there some way without changing optimizer mode and without creating an additional index, we can use the index instead of full table scan?

    David,
    Here is my test on a Oracle 10g database.
    SQL> create table mytable as select * from all_tables;
    Table created.
    SQL> set autot traceonly
    SQL> alter session set optimizer_mode = choose;
    Session altered.
    SQL> select count(*) from mytable;
    Execution Plan
       0      SELECT STATEMENT Optimizer=CHOOSE
       1    0   SORT (AGGREGATE)
       2    1     TABLE ACCESS (FULL) OF 'MYTABLE' (TABLE)
    Statistics
              1  recursive calls
              0  db block gets
             29  consistent gets
              0  physical reads
              0  redo size
            223  bytes sent via SQL*Net to client
            276  bytes received via SQL*Net from client
              2  SQL*Net roundtrips to/from client
              0  sorts (memory)
              0  sorts (disk)
              1  rows processed
    SQL> analyze table mytable compute statistics;
    Table analyzed.
    SQL>  select count(*) from mytable
      2  ;
    Execution Plan
       0      SELECT STATEMENT Optimizer=CHOOSE (Cost=11 Card=1)
       1    0   SORT (AGGREGATE)
       2    1     TABLE ACCESS (FULL) OF 'MYTABLE' (TABLE) (Cost=11 Card=1
              788)
    Statistics
              1  recursive calls
              0  db block gets
             29  consistent gets
              0  physical reads
              0  redo size
            222  bytes sent via SQL*Net to client
            276  bytes received via SQL*Net from client
              2  SQL*Net roundtrips to/from client
              0  sorts (memory)
              0  sorts (disk)
              1  rows processed
    SQL> disconnect
    Disconnected from Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - 64bit Production
    With the Partitioning, Oracle Label Security, OLAP and Data Mining options

  • How can i make the optimiser to skip this full table scan ??

    Hi,
    I am trying to tune the below query, I have checked up all the possibilities to skip the full table scan on vhd_calldesh_archive, But am unable to find the predicate in the where clause, which is letting the optimiser to choose the full table scan on vhd_calldesk_archive table, which is very large one. how can i make the optimiser to skip this full table scan.
    Please check the below sql script and explain plan ,
    SELECT a.call_id, a.entry_date,
    NVL (INITCAP (b.full_name), caller_name) AS caller_name,
    c.description AS org_desc, a.env_id, i.env_desc, a.appl_id,
    d.appl_desc, a.module_id, e.module_desc, a.call_type_id,
    f.call_type_desc, a.priority, a.upduserid,
    INITCAP (g.full_name) AS lastupdated_username, a.call_desc, h.mode_desc,
    a.received_time,a.assignment_team, a.status,
    ROUND (lcc.pkg_com.fn_datediff ('MI',
    a.entry_date,
    a.status_date
    ) AS elapsed_time,
    ROUND (lcc.pkg_com.fn_datediff ('MI',
    a.entry_date,
    a.status_date
    ) AS resolved_min,
    CASE
    WHEN a.orgid in (1,100,200) THEN a.orgid
    ELSE j.regionorgid
    END AS region
    ,(SELECT coalesce(MAX(upddate),a.upddate) FROM lcc.vhd_callstatus stat WHERE stat.call_id = a.call_id
    ) as stat_upddate
    ,(SELECT team_desc from lcc.vhd_teams t where t.team_id = a.assignment_team) as team_desc
    ,a.eta_date
    ,coalesce(a.caller_contact, b.telephone) AS caller_contact
    ,coalesce(a.caller_email, b.email) as email
    ,a.affected_users
    ,a.outage_time
    ,a.QA_DONE
    ,a.LAST_ACTION_TEAM
    ,a.LAST_ACTION_USER
    ,INITCAP (k.full_name) AS last_action_username
    ,a.last_action_date
    ,l.team_desc as last_action_teamdesc
    ,a.refid
    ,INITCAP (lu.full_name) AS logged_name
    ,a.pmreview
    ,a.status as main_status
    FROM lcc.vhd_calldesk_archive a
    LEFT OUTER JOIN lcc.lcc_userinfo_details b ON b.user_name = a.caller_id
    INNER JOIN lcc.com_organization c ON c.code = a.orgid
    INNER JOIN lcc.vhd_applications d ON d.appl_id = a.appl_id
    INNER JOIN lcc.vhd_modules e ON e.appl_id = a.appl_id AND e.module_id = a.module_id
    INNER JOIN lcc.vhd_calltypes f ON f.call_type_id = a.call_type_id
    INNER JOIN lcc.com_rptorganization j ON j.orgid = a.orgid AND j.tree = 'HLPDK'
    LEFT OUTER JOIN lcc.lcc_userinfo_details g ON g.user_name = a.upduserid
    LEFT OUTER JOIN lcc.vhd_callmode h ON h.mode_id = a.mode_id
    LEFT OUTER JOIN lcc.vhd_environment i ON i.appl_id = a.appl_id AND i.env_id = a.env_id
    LEFT OUTER JOIN lcc.lcc_userinfo_details k ON k.user_name = a.last_action_user
    LEFT OUTER JOIN lcc.vhd_teams l ON l.team_id = a.last_action_user
    LEFT OUTER JOIN (select CALL_ID,upduserid FROM lcc.VHD_CALLDESK_HISTORY P where upddate
    in ( select min(upddate) from lcc.VHD_CALLDESK_HISTORY Q WHERE Q.CALL_ID = P.CALL_ID
    group by call_id)) ku
    ON ku.call_id = a.call_id
    LEFT OUTER JOIN lcc.lcc_userinfo_details lu ON NVL(ku.upduserid,A.upduserid) = lu.user_name;
    | Id | Operation | Name | Rows | Bytes | Cost |
    | 0 | SELECT STATEMENT | | 2104 | 3667K| 37696 |
    | 1 | UNION-ALL | | | | |
    | 2 | NESTED LOOPS OUTER | | 2103 | 3665K| 37683 |
    | 3 | VIEW | | 2103 | 3616K| 35580 |
    | 4 | NESTED LOOPS OUTER | | 2103 | 823K| 35580 |
    | 5 | NESTED LOOPS OUTER | | 2103 | 774K| 33477 |
    | 6 | NESTED LOOPS OUTER | | 2103 | 685K| 31374 |
    | 7 | NESTED LOOPS | | 2103 | 636K| 29271 |
    | 8 | NESTED LOOPS | | 2103 | 603K| 27168 |
    | 9 | NESTED LOOPS OUTER | | 2103 | 558K| 25065 |
    | 10 | NESTED LOOPS OUTER | | 2103 | 515K| 22962 |
    | 11 | NESTED LOOPS | | 2103 | 472K| 20859 |
    | 12 | NESTED LOOPS | | 2103 | 429K| 18756 |
    | 13 | NESTED LOOPS OUTER | | 4826 | 890K| 13930 |
    | 14 | NESTED LOOPS OUTER | | 4826 | 848K| 9104 |
    | 15 | NESTED LOOPS | | 4826 | 754K| 4278 |
    |* 16 | TABLE ACCESS FULL | COM_RPTORGANIZATION | 75 | 1050 | 3 |
    | 17 | TABLE ACCESS BY INDEX ROWID | VHD_CALLDESK | 64 | 9344 | 57 |
    |* 18 | INDEX RANGE SCAN | VHD_CALLDSK_ORGID | 2476 | | 7 |
    | 19 | VIEW PUSHED PREDICATE | | 1 | 20 | 1 |
    |* 20 | FILTER | | | | |
    | 21 | TABLE ACCESS BY INDEX ROWID | VHD_CALLDESK_HISTORY | 1 | 20 | 2 |
    |* 22 | INDEX RANGE SCAN | VHD_CALLDSK_HIST_CALLID_IDX | 1 | | 1 |
    |* 23 | FILTER | | | | |
    | 24 | SORT GROUP BY NOSORT | | 1 | 12 | 2 |
    | 25 | TABLE ACCESS BY INDEX ROWID | VHD_CALLDESK_HISTORY | 1 | 12 | 2 |
    |* 26 | INDEX RANGE SCAN | VHD_CALLDSK_HIST_CALLID_IDX | 1 | | 1 |
    | 27 | TABLE ACCESS BY INDEX ROWID | VHD_CALLMODE | 1 | 9 | 1 |
    |* 28 | INDEX UNIQUE SCAN | VHD_CALLMOD_MODID_PK | 1 | | |
    | 29 | TABLE ACCESS BY INDEX ROWID | VHD_APPLICATIONS | 1 | 20 | 1 |
    |* 30 | INDEX UNIQUE SCAN | VHD_APPL_APPLID_PK | 1 | | |
    | 31 | TABLE ACCESS BY INDEX ROWID | VHD_CALLTYPES | 1 | 21 | 1 |
    |* 32 | INDEX UNIQUE SCAN | VHD_CALLTYP_ID_PK | 1 | | |
    | 33 | TABLE ACCESS BY INDEX ROWID | VHD_TEAMS | 1 | 21 | 1 |
    |* 34 | INDEX UNIQUE SCAN | VHD_TEAMID_PK | 1 | | |
    | 35 | TABLE ACCESS BY INDEX ROWID | VHD_ENVIRONMENT | 1 | 21 | 1 |
    |* 36 | INDEX UNIQUE SCAN | VHD_ENV_APLENVID_PK | 1 | | |
    | 37 | TABLE ACCESS BY INDEX ROWID | VHD_MODULES | 1 | 22 | 1 |
    |* 38 | INDEX UNIQUE SCAN | VHD_MOD_APLMOD_ID_PK | 1 | | |
    | 39 | TABLE ACCESS BY INDEX ROWID | COM_ORGANIZATION | 1 | 16 | 1 |
    |* 40 | INDEX UNIQUE SCAN | COM_ORG_PK | 1 | | |
    | 41 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 24 |
    |* 42 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    | 43 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 43 |
    |* 44 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    | 45 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 24 | 1
    |* 46 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    | 47 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 24 | 1
    |* 48 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    | 49 | NESTED LOOPS OUTER | | 1 | 1785 | 13 |
    | 50 | VIEW | | 1 | 1761 | 12 |
    | 51 | NESTED LOOPS OUTER | | 1 | 1656 | 12 |
    | 52 | NESTED LOOPS OUTER | | 1 | 1632 | 11 |
    | 53 | NESTED LOOPS OUTER | | 1 | 1608 | 10 |
    | 54 | NESTED LOOPS | | 1 | 1565 | 9 |
    | 55 | NESTED LOOPS | | 1 | 1549 | 9 |
    | 56 | NESTED LOOPS | | 1 | 1535 | 9 |
    | 57 | NESTED LOOPS OUTER | | 1 | 1513 | 8 |
    | 58 | NESTED LOOPS OUTER | | 1 | 1492 | 7 |
    | 59 | NESTED LOOPS | | 1 | 1471 | 6 |
    | 60 | NESTED LOOPS | | 1 | 1450 | 5 |
    | 61 | NESTED LOOPS OUTER | | 1 | 1430 | 4 |
    | 62 | NESTED LOOPS OUTER | | 1 | 1421 | 3 |
    | 63 | TABLE ACCESS FULL | VHD_CALLDESK_ARCHIVE | 1 | 1401 | 2 |
    | 64 | VIEW PUSHED PREDICATE | | 1 | 20 | 1 |
    |* 65 | FILTER | | | | |
    | 66 | TABLE ACCESS BY INDEX ROWID | VHD_CALLDESK_HISTORY | 1 | 20 | 2 |
    |* 67 | INDEX RANGE SCAN | VHD_CALLDSK_HIST_CALLID_IDX | 1 | | 1 |
    |* 68 | FILTER | | | | |
    | 69 | SORT GROUP BY NOSORT | | 1 | 12 | 2 |
    | 70 | TABLE ACCESS BY INDEX ROWID| VHD_CALLDESK_HISTORY | 1 | 12 | 2 |
    |* 71 | INDEX RANGE SCAN | VHD_CALLDSK_HIST_CALLID_IDX | 1 | | 1 |
    | 72 | TABLE ACCESS BY INDEX ROWID | VHD_CALLMODE | 1 | 9 | 1 |
    |* 73 | INDEX UNIQUE SCAN | VHD_CALLMOD_MODID_PK | 1 | | |
    | 74 | TABLE ACCESS BY INDEX ROWID | VHD_APPLICATIONS | 1 | 20 | 1 |
    |* 75 | INDEX UNIQUE SCAN | VHD_APPL_APPLID_PK | 1 | | |
    | 76 | TABLE ACCESS BY INDEX ROWID | VHD_CALLTYPES | 1 | 21 | 1 |
    |* 77 | INDEX UNIQUE SCAN | VHD_CALLTYP_ID_PK | 1 | | |
    | 78 | TABLE ACCESS BY INDEX ROWID | VHD_TEAMS | 1 | 21 | 1 |
    |* 79 | INDEX UNIQUE SCAN | VHD_TEAMID_PK | 1 | | |
    | 80 | TABLE ACCESS BY INDEX ROWID | VHD_ENVIRONMENT | 1 | 21 | 1 |
    |* 81 | INDEX UNIQUE SCAN | VHD_ENV_APLENVID_PK | 1 | | |
    | 82 | TABLE ACCESS BY INDEX ROWID | VHD_MODULES | 1 | 22 | 1 |
    |* 83 | INDEX UNIQUE SCAN | VHD_MOD_APLMOD_ID_PK | 1 | | |
    | 84 | TABLE ACCESS BY INDEX ROWID | COM_RPTORGANIZATION | 1 | 14 | |
    |* 85 | INDEX UNIQUE SCAN | COM_RPTORG_PK | 1 | | |
    | 86 | TABLE ACCESS BY INDEX ROWID | COM_ORGANIZATION | 1 | 16 | |
    |* 87 | INDEX UNIQUE SCAN | COM_ORG_PK | 1 | | |
    | 88 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 43 |
    |* 89 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    | 90 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 24 |
    |* 91 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    | 92 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 24 | 1
    |* 93 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    | 94 | TABLE ACCESS BY INDEX ROWID | LCC_USERINFO_DETAILS | 1 | 24 | 1
    |* 95 | INDEX UNIQUE SCAN | LCCUSERINFOIND | 1 | | |
    Predicate Information (identified by operation id):
    16 - filter("J"."TREE"='HLPDK')
    18 - access("J"."ORGID"="A"."ORGID")
    20 - filter( EXISTS (SELECT /*+ */ 0 FROM "LCC"."VHD_CALLDESK_HISTORY" "Q" WHERE "Q"."CALL_ID"=:B1
    "Q"."CALL_ID" HAVING MIN("Q"."UPDDATE")=:B2))
    22 - access("SYS_ALIAS_2"."CALL_ID"="A"."CALL_ID")
    23 - filter(MIN("Q"."UPDDATE")=:B1)
    26 - access("Q"."CALL_ID"=:B1)
    28 - access("H"."MODE_ID"(+)="A"."MODE_ID")
    30 - access("D"."APPL_ID"="A"."APPL_ID")
    32 - access("F"."CALL_TYPE_ID"="A"."CALL_TYPE_ID")
    34 - access("L"."TEAM_ID"(+)="A"."LAST_ACTION_TEAM")
    36 - access("I"."APPL_ID"(+)="A"."APPL_ID" AND "I"."ENV_ID"(+)="A"."ENV_ID")
    38 - access("E"."APPL_ID"="A"."APPL_ID" AND "E"."MODULE_ID"="A"."MODULE_ID")
    40 - access("C"."CODE"="A"."ORGID")
    42 - access("K"."USER_NAME"(+)="A"."LAST_ACTION_USER")
    44 - access("B"."USER_NAME"(+)="A"."CALLER_ID")
    46 - access("G"."USER_NAME"(+)="A"."UPDUSERID")
    48 - access("LU"."USER_NAME"(+)=NVL("SYS_ALIAS_4"."UPDUSERID_162","SYS_ALIAS_4"."UPDUSERID_25"))
    65 - filter( EXISTS (SELECT /*+ */ 0 FROM "LCC"."VHD_CALLDESK_HISTORY" "Q" WHERE "Q"."CALL_ID"=:B1
    "Q"."CALL_ID" HAVING MIN("Q"."UPDDATE")=:B2))
    67 - access("SYS_ALIAS_2"."CALL_ID"="SYS_ALIAS_1"."CALL_ID")
    68 - filter(MIN("Q"."UPDDATE")=:B1)
    71 - access("Q"."CALL_ID"=:B1)
    73 - access("H"."MODE_ID"(+)="SYS_ALIAS_1"."MODE_ID")
    75 - access("D"."APPL_ID"="SYS_ALIAS_1"."APPL_ID")
    77 - access("F"."CALL_TYPE_ID"="SYS_ALIAS_1"."CALL_TYPE_ID")
    79 - access("L"."TEAM_ID"(+)=TO_NUMBER("SYS_ALIAS_1"."LAST_ACTION_USER"))
    81 - access("I"."APPL_ID"(+)="SYS_ALIAS_1"."APPL_ID" AND "I"."ENV_ID"(+)="SYS_ALIAS_1"."ENV_ID")
    83 - access("E"."APPL_ID"="SYS_ALIAS_1"."APPL_ID" AND "E"."MODULE_ID"="SYS_ALIAS_1"."MODULE_ID")
    85 - access("SYS_ALIAS_1"."ORGID"="J"."ORGID" AND "J"."TREE"='HLPDK')
    87 - access("C"."CODE"="SYS_ALIAS_1"."ORGID")
    89 - access("B"."USER_NAME"(+)="SYS_ALIAS_1"."CALLER_ID")
    91 - access("SYS_ALIAS_1"."UPDUSERID"="G"."USER_NAME"(+))
    93 - access("K"."USER_NAME"(+)="SYS_ALIAS_1"."LAST_ACTION_USER")
    95 - access("LU"."USER_NAME"(+)=NVL("SYS_ALIAS_3"."UPDUSERID_162","SYS_ALIAS_3"."UPDUSERID_25"))
    Note: cpu costing is off

    I've tried to look thru your sql and changed it a bit. Of course not testet :-)
    Your problem isn't the archive table! I tried to remove the 2 selects from the select-clause. Furthermore you have a lot of nested loops in your explain, which is a performance-killer. Try getting rid of them, perhaps use /*+ USE_HASH(?,?) */.
    SELECT a.call_id, a.entry_date,
           NVL (INITCAP (b.full_name), caller_name) AS caller_name, c.description AS org_desc, a.env_id, i.env_desc, a.appl_id,
           d.appl_desc, a.module_id, e.module_desc, a.call_type_id, f.call_type_desc, a.priority, a.upduserid,
           INITCAP (g.full_name) AS lastupdated_username, a.call_desc, h.mode_desc, a.received_time, a.assignment_team, a.status,
           ROUND (lcc.pkg_com.fn_datediff ('MI', a.entry_date, a.status_date)) AS elapsed_time,
           ROUND (lcc.pkg_com.fn_datediff ('MI', a.entry_date, a.status_date)) AS resolved_min,
           CASE
              WHEN a.orgid IN (1, 100, 200)
                 THEN a.orgid
              ELSE j.regionorgid
           END AS region,
           COALESCE (stat.upddate, a.upddate) AS stat_upddate,
           t.team_desc, a.eta_date,
           COALESCE (a.caller_contact, b.telephone) AS caller_contact,
           COALESCE (a.caller_email, b.email) AS email, a.affected_users,
           a.outage_time, a.qa_done, a.last_action_team, a.last_action_user,
           INITCAP (k.full_name) AS last_action_username, a.last_action_date,
           l.team_desc AS last_action_teamdesc, a.refid,
           INITCAP (lu.full_name) AS logged_name, a.pmreview,
           a.status AS main_status
      FROM lcc.vhd_calldesk_archive a, lcc.lcc_userinfo_details b, lcc.com_organization c,
           lcc.vhd_applications d, lcc.vhd_modules e, lcc.vhd_calltypes f, lcc.com_rptorganization j,
           lcc.lcc_userinfo_details g, lcc.vhd_callmode h, lcc.vhd_environment i, lcc.lcc_userinfo_details k,
           lcc.vhd_teams l,
          (SELECT call_id, upduserid
           FROM lcc.vhd_calldesk_history p
           WHERE upddate IN (SELECT   MIN (upddate)
                             FROM lcc.vhd_calldesk_history q
                             WHERE q.call_id = p.call_id
                             GROUP BY call_id)) ku,
           lcc.lcc_userinfo_details lu,
          (SELECT call_id, MAX (upddate)
           FROM lcc.vhd_callstatus
           GROUP BY call_id) stat,
           lcc.vhd_teams t
      WHERE a.caller_id        = b.user_name(+)
        AND a.orgid            = c.code
        AND a.appl_id          = d.appl_id
        AND a.appl_id          = e.appl_id
        AND a.module_id        = e.module_id
        AND a.call_type_id     = f.call_type_id
        AND a.orgid            = j.orgid
        AND j.tree             = 'HLPDK'
        AND a.upduserid        = g.user_name(+)
        AND a.mode_id          = h.mode_id(+)
        AND a.appl_id          = i.appl_id(+)
        AND a.env_id           = i.env_id(+)
        AND a.last_action_user = k.user_name(+)
        AND a.last_action_user = l.team_id(+)
        AND a.call_id          = ku.call_id(+)
        AND NVL (ku.upduserid, a.upduserid) = lu.user_name(+)
        AND a.call_id          = stat.call_id
        AND a.assignment_team  = t.team_id;

Maybe you are looking for