Internal table operations

Hi all,
   Please tell me the alternative of using loop that is specified in Bold. some body saying that is an alternative of using some statement without using loop in loop.
* data declaration
DATA: BEGIN OF T1 OCCURS 0,
F1 TYPE I,
END OF T1.
DATA: BEGIN OF T2 OCCURS 0,
F1 TYPE I,
F2(10) TYPE C,
END OF T2.
DATA: T3 LIKE T2 OCCURS 0 WITH HEADER LINE.
* fill internal table T1
T1-F1 =  10.
APPEND T1.
T1-F1 =  20.
APPEND T1.
T1-F1 =  30.
APPEND T1.
T1-F1 =  40.
APPEND T1.
* fill internal table T2
T2-F1 =  10.
T2-F2 = 'AA'.
APPEND T2.
T2-F1 =  10.
T2-F2 = 'AB'.
APPEND T2.
T2-F1 =  10.
T2-F2 = 'AC'.
APPEND T2.
T2-F1 =  20.
T2-F2 = 'BA'.
APPEND T2.
T2-F1 =  20.
T2-F2 = 'BB'.
APPEND T2.
T2-F1 =  30.
T2-F2 = 'CA'.
APPEND T2.
T2-F1 =  30.
T2-F2 = 'CB'.
APPEND T2.
T2-F1 =  30.
T2-F2 = 'CC'.
APPEND T2.
T2-F1 =  40.
T2-F2 = 'DA'.
APPEND T2.
CLEAR: T1, T2.
* fill internal table T1
LOOP AT T1.
<b>  LOOP AT T2 WHERE F1 = T1-F1.
    APPEND T2 TO T3.
  ENDLOOP.</b>
ENDLOOP.
* display internal table T1
LOOP AT T3.
  WRITE:/ T3-F1, T3-F2.
ENDLOOP.

HI
   I guess for this case, there is no alternative statements as you have data in two internal tables. But
YES you can minimise during extraction via FOR ALL ENTRIES.
Eg:
tables: mara.
select-options: s_matnr for mara-matnr.
types: begin of t_mara,
         matnr like mara-matnr,
         mtart like mara-mtart,
       end of t_mara.
types: begin of t_marc,
         matnr like marc-matnr,
         werks like marc-werks,
       end of t_marc.
data: it_mara type standard table of t_mara,
      it_marc type standard table of t_marc.
select matnr mtart into table it_mara
       from mara
       where matnr in s_matnr.
select matnr werks into table it_marc
       from marc
       for all entries in it_mara
       where matnr = it_mara-matnr.
Kind Regards
Eswar

Similar Messages

  • Internal Table Operation Help Required

    Hi
    I have to insert 8 counters p1-p8 in a field BANFN of ITAB1.
    Like this their are 3 more fileds.I have to show the no. for PR released frm JAN-DEC in ALV format.I had doen the calualation,but unable to insert these conters in ITAB1 to do final calculation & display the result.
    Please help me.
    I had used : insert p1 into itab1-banfn where sy-index 1.
    Like this I had tried out many comands,but al in vain.PLZ help me in this regard.
    Regards.
    Vipin

    There are 8 fileds in my internal table,in which 1st one is for MONTH(JAN-DEC).
    The ALV is only suppose to display 12 rows,containing each month per row.
    Now for each month I have to display the PR converted to PO & the avg lead time for each month.So I had calu all the data ,but now I have to insert 12 counters in 4 fields.one for No of PR converted to PO in each month,than one for AVG LEAD TIME for each month.so there has to be 12 + 12 counters for each row.Similar operation I have to perform for the PR pending fo PO.So there has to be 24 more counters for again 2 diff fileds.Now I had calcuated the data,but the problem is this ,,,,,how to insert each ctr in each row.
    EG: insert ctr1 into itab1-banfn where itab1-mmyy = 'January' or sy-index = 1.
          insert ctr2 into itab1-banfn where itab1-mmyy = 'Febuary' or sy-index = 2.
          move crt1 to itab1-banfn where sy-index = 1.
    None of the operation is working.
    Like this i have to insert 48 counters in all rows for these 4 diff fileds.
    Pl help me in thsi regard ,if possible.
    regards.

  • Dynamic internal table operations

    Hi,
    I have an issue with dynamic internal table wherein I need to write  a  select statement with For All Entries on dynamic internal table and populating the record into another dynamic internal table.
    I am trying with the code below but its not working.
    SELECT (FLD)
    FROM (T_TABLE)
    INTO CORRESPONDING FIELDS OF TABLE <DYN1_TABL>
    FOR ALL ENTRIES IN <DYN_TABL>
    WHERE KEY_FNAME = <DYN_TABL>-KEY_FNAME.
    FLD is the dynamic field.
    T_TABLE is the dynamic database table.
    DYN1_TABL is the dynamic internal table
    DYN_TABL is the dynamic internal table
    KEY_FNAME is the dynamic key field of T_TABLE.
    Pls help me on this issue.
    Response with code snippets will be appreciated.
    Thanks in advance.

    Thanks for your reply Nikki but my issue is to reference  a field in dynamic internal table to be used with 'For All Entries' satement.
    like for static we use
    For All Entries in Itab where <fieldname> = itab-<fieldname>
    I was looking for the same statement for dynamic tables

  • Delete from internal table

    Hi,
    I want to delete from internal table some regords.
    I write code:
    delete  isrot where bldat < '01.09.2005'.
    it doesn't work, what is wrong?
    regards,
    Joanna

    hi,
    you write the statement like....
    <b>delete FROM isrot where bldat < '01.09.2005'.</b>
    now it will work...
    To select the lines that you want to delete using a condition, use the following:
    <b>DELETE FROM <target> WHERE <cond> .</b>
    All of the lines in the database table that satisfy the conditions in the WHERE clause are deleted. The FROM expression must occur between the keyword and the database table.
    You should take particular care when programming the WHERE clause to ensure that you do not delete the wrong lines. For example, if you specify an empty internal table in a dynamic WHERE clause, all of the lines in the table are deleted.
    If at least one line is deleted, the system sets SY-SUBRC to 0, otherwise to 4. SY-DBCNT contains the number of lines deleted.
    follow this link for more information on internal table operation.
    http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3aef358411d1829f0000e829fbfe/content.htm
    regards,
    Ashok Reddy
    Message was edited by:
            Ashok Reddy

  • Need information about Internal Tables

    Hi Every one!
    I Need some information about Internal tables. Pls help be above the same.
    Thanks & with Regards,
    Chandra.

    Hi..,
    <b>
    Internal tables </b>
    Internal tables provide a means of taking data from a fixed structure and storing it in working memory in ABAP. The data is stored line by line in memory, and each line has the same structure. In ABAP, internal tables fulfill the function of arrays. Since they are dynamic data objects, they save the programmer the task of dynamic memory management in his or her programs. You should use internal tables whenever you want to process a dataset with a fixed structure within a program. A particularly important use for internal tables is for storing and formatting data from a database table within a program. They are also a good way of including very complicated data structures in an ABAP program.
    Like all elements in the ABAP type concept, internal tables can exist both as data types and as data objects A data type is the abstract description of an internal table, either in a program or centrally in the ABAP Dictionary, that you use to create a concrete data object. The data type is also an attribute of an existing data object.
    <b>Internal Tables as Data Types</b>
    Internal tables and structures are the two structured data types in ABAP. The data type of an internal table is fully specified by its line type, key, and table type.
    <b>Line type</b>
    The line type of an internal table can be any data type. The data type of an internal table is normally a structure. Each component of the structure is a column in the internal table. However, the line type may also be elementary or another internal table.
    <b>Key</b>
    The key identifies table rows. There are two kinds of key for internal tables - the standard key and a user-defined key. You can specify whether the key should be UNIQUE or NON-UNIQUE. Internal tables with a unique key cannot contain duplicate entries. The uniqueness depends on the table access method.
    If a table has a structured line type, its default key consists of all of its non-numerical columns that are not references or themselves internal tables. If a table has an elementary line type, the default key is the entire line. The default key of an internal table whose line type is an internal table, the default key is empty.
    The user-defined key can contain any columns of the internal table that are not references or themselves internal tables. Internal tables with a user-defined key are called key tables. When you define the key, the sequence of the key fields is significant. You should remember this, for example, if you intend to sort the table according to the key.
    <b>
    Table type</b>
    The table type determines how ABAP will access individual table entries. Internal tables can be divided into three types:
    <u>Standard tables</u> have an internal linear index. From a particular size upwards, the indexes of internal tables are administered as trees. In this case, the index administration overhead increases in logarithmic and not linear relation to the number of lines. The system can access records either by using the table index or the key. The response time for key access is proportional to the number of entries in the table. The key of a standard table is always non-unique. You cannot specify a unique key. This means that standard tables can always be filled very quickly, since the system does not have to check whether there are already existing entries.
    <u>
    Sorted tables</u> are always saved sorted by the key. They also have an internal index. The system can access records either by using the table index or the key. The response time for key access is logarithmically proportional to the number of table entries, since the system uses a binary search. The key of a sorted table can be either unique or non-unique. When you define the table, you must specify whether the key is to be unique or not. Standard tables and sorted tables are known generically as index tables.
    <u>
    Hashed tables</u> have no linear index. You can only access a hashed table using its key. The response time is independent of the number of table entries, and is constant, since the system access the table entries using a hash algorithm. The key of a hashed table must be unique. When you define the table, you must specify the key as UNIQUE.
    <b>
    Generic Internal Tables</b>
    Unlike other local data types in programs, you do not have to specify the data type of an internal table fully. Instead, you can specify a generic construction, that is, the key or key and line type of an internal table data type may remain unspecified. You can use generic internal tables to specify the types of field symbols and the interface parameters of procedures . You cannot use them to declare data objects.
    <b>Internal Tables as Dynamic Data Objects</b>
    Data objects that are defined either with the data type of an internal table, or directly as an internal table, are always fully defined in respect of their line type, key and access method. However, the number of lines is not fixed. Thus internal tables are dynamic data objects, since they can contain any number of lines of a particular type. The only restriction on the number of lines an internal table may contain are the limits of your system installation. The maximum memory that can be occupied by an internal table (including its internal administration) is 2 gigabytes. A more realistic figure is up to 500 megabytes. An additional restriction for hashed tables is that they may not contain more than 2 million entries. The line types of internal tables can be any ABAP data types - elementary, structured, or internal tables. The individual lines of an internal table are called table lines or table entries. Each component of a structured line is called a column in the internal table.
    <b>
    Choosing a Table Type</b>
    The table type (and particularly the access method) that you will use depends on how the typical internal table operations will be most frequently executed.
    <b>
    Standard tables</b>
    This is the most appropriate type if you are going to address the individual table entries using the index. Index access is the quickest possible access. You should fill a standard table by appending lines (ABAP APPEND statement), and read, modify and delete entries by specifying the index (INDEX option with the relevant ABAP command). The access time for a standard table increases in a linear relationship with the number of table entries. If you need key access, standard tables are particularly useful if you can fill and process the table in separate steps. For example, you could fill the table by appending entries, and then sort it. If you use the binary search option with key access, the response time is logarithmically proportional to the number of table entries.
    <b>Sorted tables</b>
    This is the most appropriate type if you need a table which is sorted as you fill it. You fill sorted tables using the INSERT statement. Entries are inserted according to the sort sequence defined through the table key. Any illegal entries are recognized as soon as you try to add them to the table. The response time for key access is logarithmically proportional to the number of table entries, since the system always uses a binary search. Sorted tables are particularly useful for partially sequential processing in a LOOP if you specify the beginning of the table key in the WHERE condition.
    <b>
    Hashed tables</b>
    This is the most appropriate type for any table where the main operation is key access. You cannot access a hashed table using its index. The response time for key access remains constant, regardless of the number of table entries. Like database tables, hashed tables always have a unique key. Hashed tables are useful if you want to construct and use an internal table which resembles a database table or for processing large amounts of data.
    regards,
    sai ramesh

  • Internal Table and Structures

    Hi,
    I am a beginer. I know how to create a structure and how to create an internal table using ABAP/4. My problem is, i don't understand where to use internal table and structure, also i find myself very confused about the explicit work areas.
    Plese someone show me a program by explaining all of this clearly.

    Hi
    Internal tables are the core of ABAP. They are like soul of a body. For any program we use
    internal tables extensively. We can use Internal tables like normal data base tables only, but the
    basic difference is the memory allocated for internal tables is temporary. Once the program is
    closed the memory allocated for internal tables will also be out of memory.
    But while using the internal tables, there are many performance issues to be considered. i.e which
    type of internal table to be used for the program..like standard internal table, hashed internal
    table or sorted internal table etc..
    Internal tables
    Internal tables provide a means of taking data from a fixed structure and storing it in working memory in ABAP. The data is stored line by
    line in memory, and each line has the same structure. In ABAP, internal tables fulfill the function of arrays. Since they are dynamic data
    objects, they save the programmer the task of dynamic memory management in his or her programs. You should use internal tables
    whenever you want to process a dataset with a fixed structure within a program. A particularly important use for internal tables is for
    storing and formatting data from a database table within a program. They are also a good way of including very complicated data
    structures in an ABAP program.
    Like all elements in the ABAP type concept, internal tables can exist both as data types and as data objects A data type is the abstract
    description of an internal table, either in a program or centrally in the ABAP Dictionary, that you use to create a concrete data object. The
    data type is also an attribute of an existing data object.
    Internal Tables as Data Types
    Internal tables and structures are the two structured data types in ABAP. The data type of an internal table is fully specified by its line type,
    key, and table type.
    Line type
    The line type of an internal table can be any data type. The data type of an internal table is normally a structure. Each component of the
    structure is a column in the internal table. However, the line type may also be elementary or another internal table.
    Key
    The key identifies table rows. There are two kinds of key for internal tables - the standard key and a user-defined key. You can specify
    whether the key should be UNIQUE or NON-UNIQUE. Internal tables with a unique key cannot contain duplicate entries. The uniqueness
    depends on the table access method.
    If a table has a structured line type, its default key consists of all of its non-numerical columns that are not references or themselves
    internal tables. If a table has an elementary line type, the default key is the entire line. The default key of an internal table whose line type
    is an internal table, the default key is empty.
    The user-defined key can contain any columns of the internal table that are not references or themselves internal tables. Internal tables
    with a user-defined key are called key tables. When you define the key, the sequence of the key fields is significant. You should remember
    this, for example, if you intend to sort the table according to the key.
    Table type
    The table type determines how ABAP will access individual table entries. Internal tables can be divided into three types:
    Standard tables have an internal linear index. From a particular size upwards, the indexes of internal tables are administered as trees. In
    this case, the index administration overhead increases in logarithmic and not linear relation to the number of lines. The system can access
    records either by using the table index or the key. The response time for key access is proportional to the number of entries in the table.
    The key of a standard table is always non-unique. You cannot specify a unique key. This means that standard tables can always be filled
    very quickly, since the system does not have to check whether there are already existing entries.
    Sorted tables are always saved sorted by the key. They also have an internal index. The system can access records either by using the
    table index or the key. The response time for key access is logarithmically proportional to the number of table entries, since the system
    uses a binary search. The key of a sorted table can be either unique or non-unique. When you define the table, you must specify whether
    the key is to be unique or not. Standard tables and sorted tables are known generically as index tables.
    Hashed tables have no linear index. You can only access a hashed table using its key. The response time is independent of the number of
    table entries, and is constant, since the system access the table entries using a hash algorithm. The key of a hashed table must be unique.
    When you define the table, you must specify the key as UNIQUE.
    Generic Internal Tables
    Unlike other local data types in programs, you do not have to specify the data type of an internal table fully. Instead, you can specify a
    generic construction, that is, the key or key and line type of an internal table data type may remain unspecified. You can use generic
    internal tables to specify the types of field symbols and the interface parameters of procedures . You cannot use them to declare data
    objects.
    Internal Tables as Dynamic Data Objects
    Data objects that are defined either with the data type of an internal table, or directly as an internal table, are always fully defined in
    respect of their line type, key and access method. However, the number of lines is not fixed. Thus internal tables are dynamic data objects,
    since they can contain any number of lines of a particular type. The only restriction on the number of lines an internal table may contain are
    the limits of your system installation. The maximum memory that can be occupied by an internal table (including its internal administration)
    is 2 gigabytes. A more realistic figure is up to 500 megabytes. An additional restriction for hashed tables is that they may not contain more
    than 2 million entries. The line types of internal tables can be any ABAP data types - elementary, structured, or internal tables. The
    individual lines of an internal table are called table lines or table entries. Each component of a structured line is called a column in the
    internal table.
    Choosing a Table Type
    The table type (and particularly the access method) that you will use depends on how the typical internal table operations will be most
    frequently executed.
    Standard tables
    This is the most appropriate type if you are going to address the individual table entries using the index. Index access is the quickest
    possible access. You should fill a standard table by appending lines (ABAP APPEND statement), and read, modify and delete entries by
    specifying the index (INDEX option with the relevant ABAP command). The access time for a standard table increases in a linear relationship
    with the number of table entries. If you need key access, standard tables are particularly useful if you can fill and process the table in
    separate steps. For example, you could fill the table by appending entries, and then sort it. If you use the binary search option with key
    access, the response time is logarithmically proportional to the number of table entries.
    Sorted tables
    This is the most appropriate type if you need a table which is sorted as you fill it. You fill sorted tables using the INSERT statement. Entries
    are inserted according to the sort sequence defined through the table key. Any illegal entries are recognized as soon as you try to add
    them to the table. The response time for key access is logarithmically proportional to the number of table entries, since the system always
    uses a binary search. Sorted tables are particularly useful for partially sequential processing in a LOOP if you specify the beginning of the
    table key in the WHERE condition.
    Hashed tables
    This is the most appropriate type for any table where the main operation is key access. You cannot access a hashed table using its index.
    The response time for key access remains constant, regardless of the number of table entries. Like database tables, hashed tables always
    have a unique key. Hashed tables are useful if you want to construct and use an internal table which resembles a database table or for
    processing large amounts of data.
    Creating Internal Tables
    Like other elements in the ABAP type concept, you can declare internal tables as abstract data
    types in programs or in the ABAP Dictionary, and then use them to define data objects.
    Alternatively, you can define them directly as data objects. When you create an internal table as a
    data object, you should ensure that only the administration entry which belongs to an internal
    table is declared statically. The minimum size of an internal table is 256 bytes. This is important if an
    internal table occurs as a component of an aggregated data object, since even empty internal
    tables within tables can lead to high memory usage. (In the next functional release, the size of the
    table header for an initial table will be reduced to 8 bytes). Unlike all other ABAP data objects, you
    do not have to specify the memory required for an internal table. Table rows are added to and
    deleted from the table dynamically at runtime by the various statements for adding and deleting
    records.
    You can create internal tables in different types.
    You can create standard internal table and then make it sort in side the program.
    The same way you can change to hashed internal tables also.
    There will be some performance issues with regard to standard internal tables/ hashed internal
    tables/ sorted internal tables.
    Internal table types
    This section describes how to define internal tables locally in a program. You can also define internal tables globally as data types in the
    ABAP Dictionary.
    Like all local data types in programs , you define internal tables using the TYPES statement. If you do not refer to an existing table type
    using the TYPE or LIKE addition, you can use the TYPES statement to construct a new local internal table in your program.
    TYPES <t> TYPE|LIKE <tabkind> OF <linetype> [WITH <key>]
    [INITIAL SIZE <n>].
    After TYPE or LIKE, there is no reference to an existing data type. Instead, the type constructor occurs:
    <tabkind> OF <linetype> [WITH <key>]
    The type constructor defines the table type <tabkind>, the line type <linetype>, and the key <key> of the internal table <t>.
    You can, if you wish, allocate an initial amount of memory to the internal table using the INITIAL SIZE addition.
    Table type
    You can specify the table type <tabkind> as follows:
    Generic table types
    INDEX TABLE
    For creating a generic table type with index access.
    ANY TABLE
    For creating a fully-generic table type.
    Data types defined using generic types can currently only be used for field symbols and for interface parameters in procedures . The generic
    type INDEX TABLE includes standard tables and sorted tables. These are the two table types for which index access is allowed. You cannot
    pass hashed tables to field symbols or interface parameters defined in this way. The generic type ANY TABLE can represent any table. You
    can pass tables of all three types to field symbols and interface parameters defined in this way. However, these field symbols and
    parameters will then only allow operations that are possible for all tables, that is, index operations are not allowed.
    Fully-Specified Table Types
    STANDARD TABLE or TABLE
    For creating standard tables.
    SORTED TABLE
    For creating sorted tables.
    HASHED TABLE
    For creating hashed tables.
    Fully-specified table types determine how the system will access the entries in the table in key operations. It uses a linear search for
    standard tables, a binary search for sorted tables, and a search using a hash algorithm for hashed tables.
    Line type
    For the line type <linetype>, you can specify:
    Any data type if you are using the TYPE addition. This can be a predefined ABAP type, a local type in the program, or a data type from the
    ABAP Dictionary. If you specify any of the generic elementary types C, N, P, or X, any attributes that you fail to specify (field length, number
    of decimal places) are automatically filled with the default values. You cannot specify any other generic types.
    Any data object recognized within the program at that point if you are using the LIKE addition. The line type adopts the fully-specified data
    type of the data object to which you refer. Except for within classes, you can still use the LIKE addition to refer to database tables and
    structures in the ABAP Dictionary (for compatibility reasons).
    All of the lines in the internal table have the fully-specified technical attributes of the specified data type.
    Key
    You can specify the key <key> of an internal table as follows:
    [UNIQUE|NON-UNIQUE] KEY <col1> ... <col n>
    In tables with a structured line type, all of the components <coli> belong to the key as long as they are not internal tables or references,
    and do not contain internal tables or references. Key fields can be nested structures. The substructures are expanded component by
    component when you access the table using the key. The system follows the sequence of the key fields.
    [UNIQUE|NON-UNIQUE] KEY TABLE LINE
    If a table has an elementary line type (C, D, F, I, N, P, T, X), you can define the entire line as the key. If you try this for a table whose line
    type is itself a table, a syntax error occurs. If a table has a structured line type, it is possible to specify the entire line as the key. However,
    you should remember that this is often not suitable.
    [UNIQUE|NON-UNIQUE] DEFAULT KEY
    This declares the fields of the default key as the key fields. If the table has a structured line type, the default key contains all non-numeric
    columns of the internal table that are not and do not contain references or internal tables. If the table has an elementary line type, the
    default key is the entire line. The default key of an internal table whose line type is an internal table, the default key is empty.
    Specifying a key is optional. If you do not specify a key, the system defines a table type with an arbitrary key. You can only use this to
    define the types of field symbols and the interface parameters of procedures . For exceptions, refer to Special Features of Standard Tables.
    The optional additions UNIQUE or NON-UNIQUE determine whether the key is to be unique or non-unique, that is, whether the table can
    accept duplicate entries. If you do not specify UNIQUE or NON-UNIQUE for the key, the table type is generic in this respect. As such, it can
    only be used for specifying types. When you specify the table type simultaneously, you must note the following restrictions:
    You cannot use the UNIQUE addition for standard tables. The system always generates the NON-UNIQUE addition automatically.
    You must always specify the UNIQUE option when you create a hashed table.
    Initial Memory Requirement
    You can specify the initial amount of main memory assigned to an internal table object when you define the data type using the following
    addition:
    INITIAL SIZE <n>
    This size does not belong to the data type of the internal table, and does not affect the type check. You can use the above addition to
    reserve memory space for <n> table lines when you declare the table object.
    When this initial area is full, the system makes twice as much extra space available up to a limit of 8KB. Further memory areas of 12KB each
    are then allocated.
    You can usually leave it to the system to work out the initial memory requirement. The first time you fill the table, little memory is used. The
    space occupied, depending on the line width, is 16 <= <n> <= 100.
    It only makes sense to specify a concrete value of <n> if you can specify a precise number of table entries when you create the table and
    need to allocate exactly that amount of memory (exception: Appending table lines to ranked lists). This can be particularly important for
    deep-structured internal tables where the inner table only has a few entries (less than 5, for example).
    To avoid excessive requests for memory, large values of <n> are treated as follows: The largest possible value of <n> is 8KB divided by the
    length of the line. If you specify a larger value of <n>, the system calculates a new value so that n times the line width is around 12KB.
    Examples
    TYPES: BEGIN OF LINE,
    COLUMN1 TYPE I,
    COLUMN2 TYPE I,
    COLUMN3 TYPE I,
    END OF LINE.
    TYPES ITAB TYPE SORTED TABLE OF LINE WITH UNIQUE KEY COLUMN1.
    The program defines a table type ITAB. It is a sorted table, with line type of the structure LINE and a unique key of the component
    COLUMN1.
    TYPES VECTOR TYPE HASHED TABLE OF I WITH UNIQUE KEY TABLE LINE.
    TYPES: BEGIN OF LINE,
    COLUMN1 TYPE I,
    COLUMN2 TYPE I,
    COLUMN3 TYPE I,
    END OF LINE.
    TYPES ITAB TYPE SORTED TABLE OF LINE WITH UNIQUE KEY COLUMN1.
    TYPES: BEGIN OF DEEPLINE,
    FIELD TYPE C,
    TABLE1 TYPE VECTOR,
    TABLE2 TYPE ITAB,
    END OF DEEPLINE.
    TYPES DEEPTABLE TYPE STANDARD TABLE OF DEEPLINE
    WITH DEFAULT KEY.
    The program defines a table type VECTOR with type hashed table, the elementary line type I and a unique key of the entire table line. The
    second table type is the same as in the previous example. The structure DEEPLINE contains the internal table as a component. The table
    type DEEPTABLE has the line type DEEPLINE. Therefore, the elements of this internal table are themselves internal tables. The key is the
    default key - in this case the column FIELD. The key is non-unique, since the table is a standard table.
    Internal table objects
    Internal tables are dynamic variable data objects. Like all variables, you declare them using the DATA statement. You can also declare static
    internal tables in procedures using the STATICS statement, and static internal tables in classes using the CLASS-DATA statement. This
    description is restricted to the DATA statement. However, it applies equally to the STATICS and CLASS-DATA statements.
    Reference to Declared Internal Table Types
    Like all other data objects, you can declare internal table objects using the LIKE or TYPE addition of the DATA statement.
    DATA <itab> TYPE <type>|LIKE <obj> [WITH HEADER LINE].
    Here, the LIKE addition refers to an existing table object in the same program. The TYPE addition can refer to an internal type in the
    program declared using the TYPES statement, or a table type in the ABAP Dictionary.
    You must ensure that you only refer to tables that are fully typed. Referring to generic table types (ANY TABLE, INDEX TABLE) or not
    specifying the key fully is not allowed (for exceptions, refer to Special Features of Standard Tables).
    The optional addition WITH HEADER line declares an extra data object with the same name and line type as the internal table. This data
    object is known as the header line of the internal table. You use it as a work area when working with the internal table (see Using the
    Header Line as a Work Area). When you use internal tables with header lines, you must remember that the header line and the body of the
    table have the same name. If you have an internal table with header line and you want to address the body of the table, you must indicate
    this by placing brackets after the table name (<itab>[]). Otherwise, ABAP interprets the name as the name of the header line and not of the
    body of the table. You can avoid this potential confusion by using internal tables without header lines. In particular, internal tables nested
    in structures or other internal tables must not have a header line, since this can lead to ambiguous expressions.
    TYPES VECTOR TYPE SORTED TABLE OF I WITH UNIQUE KEY TABLE LINE.
    DATA: ITAB TYPE VECTOR,
    JTAB LIKE ITAB WITH HEADER LINE.
    MOVE ITAB TO JTAB. <- Syntax error!
    MOVE ITAB TO JTAB[].
    The table object ITAB is created with reference to the table type VECTOR. The table object JTAB has the same data type as ITAB. JTAB also
    has a header line. In the first MOVE statement, JTAB addresses the header line. Since this has the data type I, and the table type of ITAB
    cannot be converted into an elementary type, the MOVE statement causes a syntax error. The second MOVE statement is correct, since
    both operands are table objects.
    Declaring New Internal Tables
    You can use the DATA statement to construct new internal tables as well as using the LIKE or TYPE addition to refer to existing types or
    objects. The table type that you construct does not exist in its own right; instead, it is only an attribute of the table object. You can refer to
    it using the LIKE addition, but not using TYPE. The syntax for constructing a table object in the DATA statement is similar to that for defining
    a table type in the TYPES statement.
    DATA <itab> TYPE|LIKE <tabkind> OF <linetype> WITH <key>
    [INITIAL SIZE <n>]
    [WITH HEADER LINE].
    As when you define a table type , the type constructor
    <tabkind> OF <linetype> WITH <key>
    defines the table type <tabkind>, the line type <linekind>, and the key <key> of the internal table <itab>. Since the technical attributes of
    data objects are always fully specified, the table must be fully specified in the DATA statement. You cannot create generic table types (ANY
    TABLE, INDEX TABLE), only fully-typed tables (STANDARD TABLE, SORTED TABLE, HASHED TABLE). You must also specify the key and whether
    it is to be unique (for exceptions, refer to Special Features of Standard Tables).
    As in the TYPES statement, you can, if you wish, allocate an initial amount of memory to the internal table using the INITIAL SIZE addition.
    You can create an internal table with a header line using the WITH HEADER LINE addition. The header line is created under the same
    conditions as apply when you refer to an existing table type.
    DATA ITAB TYPE HASHED TABLE OF SPFLI
    WITH UNIQUE KEY CARRID CONNID.
    The table object ITAB has the type hashed table, a line type corresponding to the flat structure SPFLI from the ABAP Dictionary, and a
    unique key with the key fields CARRID and CONNID. The internal table ITAB can be regarded as an internal template for the database table
    SPFLI. It is therefore particularly suitable for working with data from this database table as long as you only access it using the key.

  • Difference betwen the internal tables

    Hai friends,
               Pls give me the types  of internal tables and their   differences .and its usage by example.
      regrds,
    Prashanth.

    Internal tables
    Definition
    Data structure that exists only at program runtime.
    An internal table is one of two structured data types in ABAP. It can contain any number of identically structured rows, with or without a header line.
    The header line is similar to a structure and serves as the work area of the internal table. The data type of individual rows can be either elementary or structured.
    Internal tables provide a means of taking data from a fixed structure and storing it in working memory in ABAP. The data is stored line by line in memory, and each line has the same structure. In ABAP, internal tables fulfill the function of arrays. Since they are dynamic data objects, they save the programmer the task of dynamic memory management in his or her programs. You should use internal tables whenever you want to process a dataset with a fixed structure within a program. A particularly important use for internal tables is for storing and formatting data from a database table within a program. They are also a good way of including very complicated data structures in an ABAP program.
    Like all elements in the ABAP type concept, internal tables can exist both as data types and as data objects . A data type is the abstract description of an internal table, either in a program or centrally in the ABAP Dictionary, that you use to create a concrete data object. The data type is also an attribute of an existing data object.
    Internal Tables as Data Types
    Internal tables and structures are the two structured data types in ABAP. The data type of an internal table is fully specified by its line type, key, and table type.
    Line type
    The line type of an internal table can be any data type. The data type of an internal table is normally a structure. Each component of the structure is a column in the internal table. However, the line type may also be elementary or another internal table.
    Key
    The key identifies table rows. There are two kinds of key for internal tables - the standard key and a user-defined key. You can specify whether the key should be UNIQUE or NON-UNIQUE. Internal tables with a unique key cannot contain duplicate entries. The uniqueness depends on the table access method.
    If a table has a structured line type, its default key consists of all of its non-numerical columns that are not references or themselves internal tables. If a table has an elementary line type, the default key is the entire line . The default key of an internal table whose line type is an internal table, the default key is empty.
    The user-defined key can contain any columns of the internal table that are not references or themselves internal tables. Internal tables with a user-defined key are called key tables. When you define the key, the sequence of the key fields is significant. You should remember this, for example, if you intend to sort the table according to the key.
    Table type
    The table type determines how ABAP will access individual table entries. Internal tables can be divided into three types:
    Standard tables have an internal linear index. From a particular size upwards, the indexes of internal tables are administered as trees. In this case, the index administration overhead increases in logarithmic and not linear relation to the number of lines. The system can access records either by using the table index or the key. The response time for key access is proportional to the number of entries in the table. The key of a standard table is always non-unique. You cannot specify a unique key. This means that standard tables can always be filled very quickly, since the system does not have to check whether there are already existing entries.
    Sorted tables are always saved sorted by the key. They also have an internal index. The system can access records either by using the table index or the key. The response time for key access is logarithmically proportional to the number of table entries, since the system uses a binary search. The key of a sorted table can be either unique or non-unique. When you define the table, you must specify whether the key is to be unique or not. Standard tables and sorted tables are known generically as index tables.
    Hashed tables have no linear index. You can only access a hashed table using its key. The response time is independent of the number of table entries, and is constant, since the system access the table entries using a hash algorithm. The key of a hashed table must be unique. When you define the table, you must specify the key as UNIQUE.
    Generic Internal Tables
    Unlike other local data types in programs, you do not have to specify the data type of an internal table fully. Instead, you can specify a generic construction, that is, the key or key and line type of an internal table data type may remain unspecified. You can use generic internal tables to specify the types of field symbols and the interface parameters of procedures. You cannot use them to declare data objects.
    Internal Tables as Dynamic Data Objects
    Data objects that are defined either with the data type of an internal table, or directly as an internal table, are always fully defined in respect of their line type, key and access method. However, the number of lines is not fixed. Thus internal tables are dynamic data objects, since they can contain any number of lines of a particular type. The only restriction on the number of lines an internal table may contain are the limits of your system installation. The maximum memory that can be occupied by an internal table (including its internal administration) is 2 gigabytes. A more realistic figure is up to 500 megabytes. An additional restriction for hashed tables is that they may not contain more than 2 million entries. The line types of internal tables can be any ABAP data types - elementary, structured, or internal tables. The individual lines of an internal table are called table lines or table entries. Each component of a structured line is called a column in the internal table.
    Choosing a Table Type
    The table type (and particularly the access method) that you will use depends on how the typical internal table operations will be most frequently executed.
    Standard tables
    This is the most appropriate type if you are going to address the individual table entries using the index. Index access is the quickest possible access. You should fill a standard table by appending lines (ABAP APPEND statement), and read, modify and delete entries by specifying the index (INDEX option with the relevant ABAP command). The access time for a standard table increases in a linear relationship with the number of table entries. If you need key access, standard tables are particularly useful if you can fill and process the table in separate steps. For example, you could fill the table by appending entries, and then sort it. If you use the binary search option with key access, the response time is logarithmically proportional to the number of table entries.
    Sorted tables
    This is the most appropriate type if you need a table which is sorted as you fill it. You fill sorted tables using the INSERT statement. Entries are inserted according to the sort sequence defined through the table key. Any illegal entries are recognized as soon as you try to add them to the table. The response time for key access is logarithmically proportional to the number of table entries, since the system always uses a binary search. Sorted tables are particularly useful for partially sequential processing in a LOOP if you specify the beginning of the table key in the WHERE condition.
    Hashed tables
    This is the most appropriate type for any table where the main operation is key access. You cannot access a hashed table using its index. The response time for key access remains constant, regardless of the number of table entries. Like database tables, hashed tables always have a unique key. Hashed tables are useful if you want to construct and use an internal table which resembles a database table or for processing large amounts of data.
    Special Features of Standard Tables
    Unlike sorted tables, hashed tables, and key access to internal tables, which were only introduced in Release 4.0, standard tables already existed several releases previously. Defining a line type, table type, and tables without a header line have only been possible since Release 3.0. For this reason, there are certain features of standard tables that still exist for compatibility reasons.
    Standard Tables Before Release 3.0
    Before Release 3.0, internal tables all had header lines and a flat-structured line type. There were no independent table types. You could only create a table object using the OCCURS addition in the DATA statement, followed by a declaration of a flat structure:
    DATA: BEGIN OF  .
    The effect of the OCCURS addition is to construct a standard table with the data type
    They can also be replaced by the following statements:
    Standard Tables From Release 4.0
    When you create a standard table, you can use the following forms of the TYPES and DATA statements. The addition INITIAL SIZE is also possible in all of the statements. The addition WITH HEADER LINE is possible in the DATA statement.
    Standard Table Types
    Generic Standard Table Type:
    TYPES  TYPE|LIKE TABLE OF  TYPE|LIKE TABLE OF 
                           WITH   TYPE|LIKE TABLE OF  TYPE|LIKE TABLE OF  TYPE|LIKE TABLE OF 
                           WITH   .
    Here, the LIKE addition refers to an existing table object in the same program. The TYPE addition can refer to an internal type in the program declared using the TYPES statement, or a table type in the ABAP Dictionary.
    You must ensure that you only refer to tables that are fully typed. Referring to generic table types (ANY TABLE, INDEX TABLE) or not specifying the key fully is not allowed (for exceptions, refer to Special Features of Standard Tables).
    The optional addition WITH HEADER line declares an extra data object with the same name and line type as the internal table. This data object is known as the header line of the internal table. You use it as a work area when working with the internal table (see Using the Header Line as a Work Area). When you use internal tables with header lines, you must remember that the header line and the body of the table have the same name. If you have an internal table with header line and you want to address the body of the table, you must indicate this by placing brackets after the table name ([]). Otherwise, ABAP interprets the name as the name of the header line and not of the body of the table. You can avoid this potential confusion by using internal tables without header lines. In particular, internal tables nested in structures or other internal tables must not have a header line, since this can lead to ambiguous expressions.
                      TYPES VECTOR TYPE SORTED TABLE OF I WITH UNIQUE KEY TABLE LINE.
    DATA: ITAB TYPE VECTOR,
          JTAB LIKE ITAB WITH HEADER LINE.
    MOVE ITAB TO JTAB.   <-  Syntax error!
    MOVE ITAB TO JTAB[].
    The table object ITAB is created with reference to the table type VECTOR. The table object JTAB has the same data type as ITAB. JTAB also has a header line. In the first MOVE statement, JTAB addresses the header line. Since this has the data type I, and the table type of ITAB cannot be converted into an elementary type, the MOVE statement causes a syntax error. The second MOVE statement is correct, since both operands are table objects.
    Declaring New Internal Tables
    You can use the DATA statement to construct new internal tables as well as using the LIKE or TYPE addition to refer to existing types or objects. The table type that you construct does not exist in its own right; instead, it is only an attribute of the table object. You can refer to it using the LIKE addition, but not using TYPE. The syntax for constructing a table object in the DATA statement is similar to that for defining a table type in the TYPES statement.
    DATA ]
    As when you define a table type, the type constructor
    of an internal table as follows:
    UNIQUE KEY  belong to the key as long as they are not internal tables or references, and do not contain internal tables or references. Key fields can be nested structures. The substructures are expanded component by component when you access the table using the key. The system follows the sequence of the key fields.
    UNIQUE KEY TABLE LINE
    If a table has an elementary line type (C, D, F, I, N, P, T, X), you can define the entire line as the key. If you try this for a table whose line type is itself a table, a syntax error occurs. If a table has a structured line type, it is possible to specify the entire line as the key. However, you should remember that this is often not suitable.
    UNIQUE DEFAULT KEY
    This declares the fields of the default key as the key fields. If the table has a structured line type, the default key contains all non-numeric columns of the internal table that are not and do not contain references or internal tables. If the table has an elementary line type, the default key is the entire line. The default key of an internal table whose line type is an internal table, the default key is empty.
    Specifying a key is optional. If you do not specify a key, the system defines a table type with an arbitrary key. You can only use this to define the types of field symbols and the interface parameters of procedures. For exceptions, refer to Special Features of Standard Tables.
    The optional additions UNIQUE or NON-UNIQUE determine whether the key is to be unique or non-unique, that is, whether the table can accept duplicate entries. If you do not specify UNIQUE or NON-UNIQUE for the key, the table type is generic in this respect. As such, it can only be used for specifying types. When you specify the table type simultaneously, you must note the following restrictions:
    ·     You cannot use the UNIQUE addition for standard tables. The system always generates the NON-UNIQUE addition automatically.
    ·     You must always specify the UNIQUE option when you create a hashed table.
    Initial Memory Requirement
    You can specify the initial amount of main memory assigned to an internal table object when you define the data type using the following addition:
    INITIAL SIZE , the system calculates a new value so that n times the line width is around 12KB.
    Examples
    TYPES: BEGIN OF LINE,
      COLUMN1 TYPE I,
      COLUMN2 TYPE I,
      COLUMN3 TYPE I,
    END OF LINE.
    1. TYPES ITAB TYPE SORTED TABLE OF LINE WITH UNIQUE KEY COLUMN1.
    The program defines a table type ITAB. It is a sorted table, with line type of the structure LINE and a unique key of the component COLUMN1.
    2. TYPES VECTOR TYPE HASHED TABLE OF I WITH UNIQUE KEY                      TABLE LINE.
    TYPES: BEGIN OF LINE,
      COLUMN1 TYPE I,
      COLUMN2 TYPE I,
      COLUMN3 TYPE I,
    END OF LINE.
    TYPES ITAB TYPE SORTED TABLE OF LINE WITH UNIQUE KEY COLUMN1.
    TYPES: BEGIN OF DEEPLINE,
    FIELD TYPE C,
    TABLE1 TYPE VECTOR,
    TABLE2 TYPE ITAB,
    END OF DEEPLINE.
    TYPES DEEPTABLE TYPE STANDARD TABLE OF DEEPLINE
    WITH DEFAULT KEY.
    The program defines a table type VECTOR with type hashed table, the elementary line type I and a unique key of the entire table line. The second table type is the same as in the previous example. The structure DEEPLINE contains the internal table as a component. The table type DEEPTABLE has the line type DEEPLINE. Therefore, the elements of this internal table are themselves internal tables. The key is the default key - in this case the column FIELD. The key is non-unique, since the table is a standard table.
    Specifying the Type of Formal Parameters
    Formal parameters can have any valid ABAP data type. You can specify the type of a formal parameter, either generically or fully, using the TYPE or LIKE addition. If you specify a generic type, the type of the formal parameter is either partially specified or not specified at all. Any attributes that are not specified are inherited from the corresponding actual parameter when the subroutine is called. If you specify the type fully, all of the technical attributes of the formal parameter are defined with the subroutine definition.
    The following remarks about specifying the types of parameters also apply to the parameters of other procedures (function modules and methods).
    If you have specified the type of the formal parameters, the system checks that the corresponding actual parameters are compatible when the subroutine is called. For internal subroutines, the system checks this in the syntax check. For external subroutines, the check cannot occur until runtime.
    By specifying the type, you ensure that a subroutine always works with the correct data type. Generic formal parameters allow a large degree of freedom when you call subroutines, since you can pass data of any type. This restricts accordingly the options for processing data in the subroutine, since the operations must be valid for all data types. For example, assigning one data object to another may not even be possible for all data types. If you specify the types of subroutine parameters, you can perform a much wider range of operations, since only the data appropriate to those operations can be passed in the call. If you want to process structured data objects component by component in a subroutine, you must specify the type of the parameter.
    Specifying Generic Types
    The following types allow you more freedom when using actual parameters. The actual parameter need only have the selection of attributes possessed by the formal parameter. The formal parameter adopts its remaining unnamed attributes from the actual parameter.
         Check for actual parameters
    No type specificationTYPE ANY     The subroutine accepts actual parameters of any type. The formal parameter inherits all of the technical attributes of the actual parameter.
    TYPE C, N, P, or X     The subroutine only accepts actual parameters with the type C, N, P, or X. The formal parameter inherits the field length and DECIMALS specification (for type P) from the actual parameter.
    TYPE TABLE     The system checks whether the actual parameter is a standard internal table. This is a shortened form of TYPE STANDARD TABLE (see below).
    TYPE ANY TABLE     The system checks whether the actual parameter is an internal table. The formal parameter inherits all of the attributes (line type, table type, key) from the actual parameter.
    TYPE INDEX TABLE     The system checks whether the actual parameter is an index table (standard or sorted table). The formal parameter inherits all of the attributes (line type, table type, key) from the actual parameter.
    TYPE STANDARD TABLE     The system checks whether the actual parameter is a standard internal table. The formal parameter inherits all of the attributes (line type, key) from the actual parameter.
    TYPE SORTED TABLE     The system checks whether the actual parameter is a sorted table. The formal parameter inherits all of the attributes (line type, key) from the actual parameter.
    TYPE HASHED TABLE     The system checks whether the actual parameter is a hashed table. The formal parameter inherits all of the attributes (line type, key) from the actual parameter.
    Note that formal parameters inherit the attributes of their corresponding actual parameters dynamically at runtime, and so they cannot be identified in the program code. For example, you cannot address an inherited table key statically in a subroutine, but you probably can dynamically.
    TYPES: BEGIN OF LINE,
            COL1,
            COL2,
          END OF LINE.
    DATA: WA TYPE LINE,
          ITAB TYPE HASHED TABLE OF LINE WITH UNIQUE KEY COL1,
          KEY(4) VALUE 'COL1'.
    WA-COL1 = 'X'. INSERT WA INTO TABLE ITAB.
    WA-COL1 = 'Y'. INSERT WA INTO TABLE ITAB.
    PERFORM DEMO USING ITAB.
    FORM DEMO USING P TYPE ANY TABLE.
      READ TABLE P WITH TABLE KEY (KEY) = 'X' INTO WA.
    ENDFORM.
    The table key is addressed dynamically in the subroutine. However, the static address
    READ TABLE P WITH TABLE KEY COL1 = 'X' INTO WA.
    is syntactically incorrect, since the formal parameter P does not adopt the key of table ITAB until runtime.
    Assigning Internal Tables :
    Like other data objects, you can use internal tables as operands in a MOVE statement
    MOVE , including the data in any nested internal tables. The original contents of the target table are overwritten.
    If you are using internal tables with header lines, remember that the header line and the body of the table have the same name. If you want to address the body of the table in an assignment, you must place two brackets () after the table name.
    DATA: BEGIN OF line,
            col1(1) TYPE c,
            col2(1) TYPE c,
          END OF line.
    DATA: etab LIKE TABLE OF line WITH HEADER LINE,
          ftab LIKE TABLE OF line.
    line-col1 = 'A'. line-col2 = 'B'.
    APPEND line TO etab.
    MOVE etab[] TO ftab.
    LOOP AT ftab INTO line.
      WRITE: / line-col1, line-col2.
    ENDLOOP.
    The output is:
    A B
    The example creates two standard tables ETAB and FTAB with the line type of the structure LINE. ETAB has a header line. After filling ETAB line by line using the APPEND statement, its entire contents are assigned to FTAB. Note the brackets in the statement.
    DATA: ftab TYPE SORTED TABLE OF f
               WITH NON-UNIQUE KEY table_line,
          itab TYPE HASHED TABLE OF i
               WITH UNIQUE KEY table_line,
          fl   TYPE f.
    DO 3 TIMES.
      INSERT sy-index INTO TABLE itab.
    ENDDO.
    ftab = itab.
    LOOP AT ftab INTO fl.
      WRITE: / fl.
    ENDLOOP.
    The output is:
    1.000000000000000E+00
    2.000000000000000E+00
    3.000000000000000E+00
    FTAB is a sorted table with line type F and a non-unique key. ITAB is a hashed table with line type I and a unique key. The line types, and therefore the entire tables, are convertible. It is therefore possible to assign the contents of ITAB to FTAB. When you assign the unsorted table ITAB to the sorted table FTAB, the contents are automatically sorted by the key of FTAB.
    In Unicode systems, the following conversion is not allowed:
    DATA: BEGIN OF iline,
            num TYPE i,
          END OF iline,
          BEGIN OF fline,
            num TYPE f,
          END OF fline,
          itab LIKE TABLE OF iline,
          ftab LIKE TABLE OF fline.
    DO 3 TIMES.
      iline-num = sy-index.
      APPEND iline-num TO itab.
    ENDDO.
    ftab = itab.
    loop AT ftab INTO fline.
      WRITE: / fline-num.
    ENDLOOP.
    In a non-Unicode system, the output may look something like this:
            6.03823403895813E-154
            6.03969074613219E-154
            6.04114745330626E-154
    Here, the line types of the internal tables ITAB and FTAB are structures each with one component of type I or F. The line types are convertible, but not compatible. Therefore, when assigning ITAB to FTAB, the contents of Table ITAB are converted to type C fields and then written to FTAB. The system interprets the transferred data as type F fields, so that the results are meaningless. In Unicode systems, you are not allowed to convert numeric fields to fields of type C.
    Initializing Internal Tables
    Like all data objects, you can initialize internal tables with the
    CLEAR .
    statement. This statement restores an internal table to the state it was in immediately after you declared it. This means that the table contains no lines. However, the memory already occupied by the memory up until you cleared it remains allocated to the table.
    If you are using internal tables with header lines, remember that the header line and the body of the table have the same name. If you want to address the body of the table in a comparison, you must place two brackets () after the table name.
    CLEAR , LT, <).
    If you are using internal tables with header lines, remember that the header line and the body of the table have the same name. If you want to address the body of the table in a comparison, you must place two brackets () after the table name.
    The first criterion for comparing internal tables is the number of lines they contain. The more lines an internal table contains, the larger it is. If two internal tables contain the same number of lines, they are compared line by line, component by component. If components of the table lines are themselves internal tables, they are compared recursively. If you are testing internal tables for anything other than equality, the comparison stops when it reaches the first pair of components that are unequal, and returns the corresponding result.
    DATA: BEGIN OF LINE,
    COL1 TYPE I,
    COL2 TYPE I,
    END OF LINE.
    DATA: ITAB LIKE TABLE OF LINE,
                 JTAB LIKE TABLE OF LINE.
    DO 3 TIMES.
    LINE-COL1 = SY-INDEX.
    LINE-COL2 = SY-INDEX ** 2.
      APPEND LINE TO ITAB.
    ENDDO.
    MOVE ITAB TO JTAB.
    LINE-COL1 = 10. LINE-COL2 = 20.
    APPEND LINE TO ITAB.
    IF ITAB GT JTAB.
    WRITE / 'ITAB GT JTAB'.
    ENDIF.
    APPEND LINE TO JTAB.
    IF ITAB EQ JTAB.
    WRITE / 'ITAB EQ JTAB'.
    ENDIF.
    LINE-COL1 = 30. LINE-COL2 = 80.
    APPEND LINE TO ITAB.
    IF JTAB LE ITAB.
    WRITE / 'JTAB LE ITAB'.
    ENDIF.
    LINE-COL1 = 50. LINE-COL2 = 60.
    APPEND LINE TO JTAB.
    IF ITAB NE JTAB.
    WRITE / 'ITAB NE JTAB'.
    ENDIF.
    IF ITAB LT JTAB.
    WRITE / 'ITAB LT JTAB'.
    ENDIF.
    The output is:
    ITAB GT JTAB
    ITAB EQ JTAB
    JTAB LE ITAB
    ITAB NE JTAB
    ITAB LT JTAB
    This example creates two standard tables, ITAB and JTAB. ITAB is filled with 3 lines and copied to JTAB. Then, another line is appended to ITAB and the first logical expression tests whether ITAB is greater than JTAB. After appending the same line to JTAB, the second logical expression tests whether both tables are equal. Then, another line is appended to ITAB and the third logical expressions tests whether JTAB is less than or equal to ITAB. Next, another line is appended to JTAB. Its contents are unequal to the contents of the last line of ITAB. The next logical expressions test whether ITAB is not equal to JTAB. The first table field whose contents are different in ITAB and JTAB is COL1 in the last line of the table: 30 in ITAB and 50 in JTAB. Therefore, in the last logical expression, ITAB is less than JTAB.
    Sorting Internal Tables
    You can sort a standard or hashed table in a program. To sort a table by its key, use the statement
    SORT  ASCENDING .
    The statement sorts the internal table  ASCENDING
                 BY  ASCENDING
                     ASCENDING .
    The table is now sorted by the specified components : ‘T’ for standard table, ‘S’ for sorted table, and ‘H’ for hashed table.
    DATA: BEGIN OF LINE,
             COL1 TYPE I,
             COL2 TYPE I,
          END OF LINE.
    DATA ITAB LIKE HASHED TABLE OF LINE WITH UNIQUE KEY COL1
                                        INITIAL SIZE 10.
    DATA: LIN TYPE I,
          INI TYPE I,
          KND TYPE C.
    DESCRIBE TABLE ITAB LINES LIN OCCURS INI KIND KND.
    WRITE: / LIN, INI, KND.
    DO 1000 TIMES.
      LINE-COL1 = SY-INDEX.
      LINE-COL2 = SY-INDEX ** 2.
    INSERT LINE INTO TABLE ITAB.
    ENDDO.
    DESCRIBE TABLE ITAB LINES LIN OCCURS INI KIND KND.
    WRITE: / LIN, INI, KND.
    The output is:
             0         10  H
         1,000         10  H
    Here, a hashed table ITAB is created and filled. The DESCRIBE TABLE statement is processed before and after the table is filled. The current number of lines changes, but the number of initial lines cannot change.
    INSERT LINE INTO TABLE ITAB.
    LINE-TEXT = 'Moller'.
    CONVERT TEXT LINE-TEXT INTO SORTABLE CODE LINE-XTEXT.
    INSERT LINE INTO TABLE ITAB.
    LINE-TEXT = 'Miller'.
    CONVERT TEXT LINE-TEXT INTO SORTABLE CODE LINE-XTEXT.
    INSERT LINE INTO TABLE ITAB.
    SORT ITAB.
    PERFORM LOOP_AT_ITAB.
    SORT ITAB BY XTEXT.
    PERFORM LOOP_AT_ITAB.
    SORT ITAB AS TEXT.
    PERFORM LOOP_AT_ITAB.
    FORM LOOP_AT_ITAB.
      LOOP AT ITAB INTO LINE.
        WRITE / LINE-TEXT.
      ENDLOOP.
      SKIP.
    ENDFORM.
    This example demonstrates alphabetical sorting of character fields. The internal table ITAB contains a column with character fields and a column with corresponding binary codes that are alphabetically sortable. The binary codes are created with the CONVERT statement (see Converting to a Sortable Format). The table is sorted three times. First, it is sorted binarily by the TEXT field. Second, it is sorted binarily by the XTEXT field. Third, it is sorted alphabetically by the TEXT field. Since there is no directly corresponding case in English, we have taken the results from a German text environment:
    Miller
    Moller
    Muller
    Möller
    Miller
    Moller
    Möller
    Muller
    Miller
    Moller
    Möller
    Muller
    After the first sorting, 'Möller' follows behind 'Muller' since the internal code for the letter 'ö' comes after the code for 'u'. The other two sorts are alphabetical
    The binary sort by XTEXT has the same result as the alphabetical sorting by the field TEXT.
    Regards,
    Amit
    Reward all helpful replies.

  • Tutorials on Internal Tables.

    Hi,
    I am new to ABAP and this site. I need some one's help to know about <b>Internal Tables </b>and it's concept.
    Can any one provide me Tutorials on this ?
    Answers will be appreciated.
    Thanks,
    Shyam

    Internal Tables
    Internal tables provide a means of taking data from a fixed structure and storing it in working memory in ABAP. The data is stored line by line in memory, and each line has the same structure. In ABAP, internal tables fulfill the function of arrays. Since they are dynamic data objects, they save the programmer the task of dynamic memory management in his or her programs. You should use internal tables whenever you want to process a dataset with a fixed structure within a program. A particularly important use for internal tables is for storing and formatting data from a database table within a program. They are also a good way of including very complicated data structures in an ABAP program.
    Data Type of an Internal Table
    The data type of an internal table is fully specified by its line type, key, and table type.
    Line Type
    The line type of an internal table can be any data type. The data type of an internal table is normally a structure. Each component of the structure is a column in the internal table. However, the line type may also be elementary or another internal table.
    Key
    The key identifies table rows. There are two kinds of key for internal tables - the standard key and a user-defined key. You can specify whether the key should be UNIQUE or NON-UNIQUE. Internal tables with a unique key cannot contain duplicate entries. The uniqueness depends on the table access method.
    At tables with structured row type, the standard key is formed from all character-type columns of the internal table. If a table has an elementary line type, the default key is the entire line. The default key of an internal table whose line type is an internal table, the default key is empty. At tables with non-structured row type, the standard key consists of the entire row. If the row type is also a table, an empty key is defined.
    The user-defined key can contain any columns of the internal table that are no internal table themselves, and do not contain internal tables. References are allowed as table keys. Internal tables with a user-defined key are called key tables. When you define the key, the sequence of the key fields is significant. You should remember this, for example, if you intend to sort the table according to the key.
    Table type
    The table type determines how ABAP will access individual table entries. Internal tables can be divided into three types:
    Standard tables have an internal linear index. From a particular size upwards, the indexes of internal tables are administered as trees. In this case, the index administration overhead increases in logarithmic and not linear relation to the number of lines. The system can access records either by using the table index or the key. The response time for key access is proportional to the number of entries in the table. The key of a standard table is always non-unique. You cannot specify a unique key. This means that standard tables can always be filled very quickly, since the system does not have to check whether there are already existing entries.
    Sorted tables are always saved sorted by the key. They also have an internal index. The system can access records either by using the table index or the key. The response time for key access is logarithmically proportional to the number of table entries, since the system uses a binary search. The key of a sorted table can be either unique or non-unique. When you define the table, you must specify whether the key is to be UNIQUE or NON-UNIQUE. Standard tables and sorted tables are known generically as index tables.
    Hashed tables have no linear index. You can only access a hashed table using its key. The response time is independent of the number of table entries, and is constant, since the system access the table entries using a hash algorithm. The key of a hashed table must be unique. When you define the table, you must specify the key as UNIQUE.
    Generic Internal Tables
    Unlike other local data types in programs, you do not have to specify the data type of an internal table fully. Instead, you can specify a generic construction, that is, the key or key and line type of an internal table data type may remain unspecified. You can use generic internal tables to specify the types of field symbols  and the interface parameters of procedures . You cannot use them to declare data objects.
    Internal Tables as Dynamic Data Objects
    Internal tables are always completely specified regarding row type, key and access type. However, the number of lines is not fixed. Thus internal tables are dynamic data objects, since they can contain any number of lines of a particular type. The only restriction on the number of lines an internal table may contain are the limits of your system installation. The maximum memory that can be occupied by an internal table (including its internal administration) is 2 gigabytes. A more realistic figure is up to 500 megabytes. An additional restriction for hashed tables is that they may not contain more than 2 million entries. The line types of internal tables can be any ABAP data types - elementary, structured, or internal tables. The individual lines of an internal table are called table lines or table entries. Each component of a structured line is called a column in the internal table.
    Choosing a Table Type
    The table type (and particularly the access method) that you will use depends on how the typical internal table operations will be most frequently executed.
    Standard tables
    This is the most appropriate type if you are going to address the individual table entries using the index. Index access is the quickest possible access. You should fill a standard table by appending lines (ABAP APPENDstatement), and read, modify and delete entries by specifying the index (INDEX option with the relevant ABAP command). The access time for a standard table increases in a linear relationship with the number of table entries. If you need key access, standard tables are particularly useful if you can fill and process the table in separate steps. For example, you could fill the table by appending entries, and then sort it. If you use the binary search option (BINARY) with key access, the response time is logarithmically proportional to the number of table entries.
    Sorted tables
    This is the most appropriate type if you need a table which is sorted as you fill it. You fill sorted tables using the INSERTstatement. Entries are inserted according to the sort sequence defined through the table key. Any illegal entries are recognized as soon as you try to add them to the table. The response time for key access is logarithmically proportional to the number of table entries, since the system always uses a binary search. Sorted tables are particularly useful for partially sequential processing in a LOOP if you specify the beginning of the table key in the WHEREcondition.
    Hashed tables
    This is the most appropriate type for any table where the main operation is key access. You cannot access a hashed table using its index. The response time for key access remains constant, regardless of the number of table entries. Like database tables, hashed tables always have a unique key. Hashed tables are useful if you want to construct and use an internal table which resembles a database table or for processing large amounts of data.
    Creating Internal Tables
    Processing Internal Tables

  • Finding duplicates:Minus set operator in dealing with internal tables

    Dear experts,
    I am newbie to ABAP developement,i have been given an assignment to find the duplicate list of vendors in lfa table.
    Now duplicate list doesnot means that text tokens will be just exact to conclude them as duplicate ,it could also be like
    1111 Vendor ABC
    1222 ABC Vendor
    If anybody has clue ,how to work on such a problem ,plz come forward.
    Right now i just tried initially how to find exact duplicates,i found  on change command,it do works.
    Then i am trying a new way which should just do the same thing.
    I did as per this algorithm
    1.Compute wholesome list in one internal table itab1
    2.Used delete adjacent duplicates in itab2.
    3.I feel itab3=itab1-itab2 will contain all duplicates in itab3.
    Can anyone give me a hint.How can i do A-B ?.

    Hi Arul,
    There is no special aided SET operations upon internal tables in ABAP. Concerning your particular task I would say that you can try INSERT statement for each record in your internal table without preliminary comparing them with DB table. If there is a record in DB table with the same key then sy-subrc after INSERT will be non zero (actually 4) and no real insert would occur. So, only those records would be inserted which have no counterpart in DB table.
    Best regards, Sergei

  • How to perform aritmetic operations on interna table's fields ?

    i have an internal table containing entries from ekpo table.
    while displaying the internal table's entries i would like to add the field containing net price for the same po numbers.
    so, how do i perform arithmetic operations on this itab ? plz help..

    HI,
    see this example.
    u can do like this.
    DATA: BEGIN OF seats OCCURS 0,
            carrid   TYPE sflight-carrid,
            connid   TYPE sflight-connid,
            seatsocc TYPE sflight-seatsocc,
          END OF seats.
    DATA seats_tab LIKE HASHED TABLE OF seats
                   WITH UNIQUE KEY carrid connid with header line.
    SELECT carrid connid seatsocc
           FROM sflight
           INTO table seats.
    loop at seats.
      COLLECT seats INTO seats_tab.
    endloop.
    LOOP AT seats_tab.
    write:/ seats_tab-carrid,seats_tab-connid,seats_tab-seatsocc.
    ENDLOOP.
    rgds,
    bharat.

  • Set operations on Internal tables.

    Hi,
      Last week i had to enhance a program that has a internal table with some records. I need to find populate a table with the records in the internal table. But before populating i must find out the difference in the records (i.e) the extra records in the internal table compared with the records in the database table and then i have to append those records in the internal table again and then insert the internal table records into database table. while doing it i need to create another internal table with records in database table and then loop at it to find the extra records and rest of the logic goes on.
      At this point of time it clicked in my mind "WHY DON'T WE HAVE SET OPERATIONS ON TWO INTERNAL TABELS(UNION, INTERSECTION, MINUS)".
      Now i am doing some study how to implemnt it. Before that i want to find out whether that functionality exists in ABAP or anybody of youo gurus have done similar work on it.
    Pls help me in proceeding with my work.

    Hi Arul,
    There is no special aided SET operations upon internal tables in ABAP. Concerning your particular task I would say that you can try INSERT statement for each record in your internal table without preliminary comparing them with DB table. If there is a record in DB table with the same key then sy-subrc after INSERT will be non zero (actually 4) and no real insert would occur. So, only those records would be inserted which have no counterpart in DB table.
    Best regards, Sergei

  • String operations in internal table

    Dear friends..
            Good morning.
                        I wish to know.. how i segregate the field from a database table to internal table into two different internal table field. say for example.
    i have db table tab1 which has field number
    tab1 -> number
    and i have another internal table itab1 whic has two fields numa and numb
    tab1 -> numa
         -> numb
    i have value in tab1->number is 001 and 0001
    i wish to segregate this two values in to internal table
    if the value is 001 then it should be into 001 -> numa
    if the value is 0001 then it should be into 0001-> numb
    i dont know how to perform the string operations in internal table.. would you like to tell me how i fix this problem any suggetion, article, code will be great help of mine..
    thanking you
    Regards
    Naim

    Hi,
      what u can do is check the lenth
    lit_data_tab.
    lit_data_3
    lit_data_4.
    lv_char3 type char3.
    lv_char4 type char4.
    lv_length type i.
    loop at lit_data_tab.
    lv_length = STRLEN ( lit_data_tab-value ).
    if lv_length = 3.
       lv_char3 = lit_data_tab-value .
       append lv_char3 to lv_char3 type char3.
    else.
       lv_char4 = lit_data_tab-value .
       append lv_char4 to lv_char3 type char4.
    endif.
    endloop.
    if u want
    numa  numb
    003   0003.
    then u have to loop in one table and modify other.
    that is any one table should contains both the field.
    read the table with one field
    mark helpfull answers
    Regards
    Message was edited by: Manoj Gupta

  • Internal Table Line Operations - Collect Statement

    Hello Gurus,
    I have an internal table with data in it. The fields of the internal table are
    Location - Matnr - Qty - Flag.
    Same material can be at different locations with different quantities. I need to get material and total quantity of the material in all the locations in a new internal table.
    If the table (it_tab) contains -
    Location - matnr - qty - flag
    1200        abc       10    S
    1201        abc       20    S
    1205        abc       30    S
    1207        abc       50    S
    1200        xyz       20    S
    1201        xyz       25    S
    1300        xyz       22    S
    From this table, I need to get the result int table (it_res) as below -
    Matnr - qty
    abc      110
    xyz       67
    110 = 102030+50
    67 = 252220
    My idea is we can use collect statement looping the it_tab table.
    Please help me how to do this.
    Regards,
    Balu

    Hi balu,
    1. Simple
    2. Create one another internal table STAB,
        with only two fields
       a) MATNR
       b) QTY
    3. Now,
    4.
    Loop at Itab.
    Move-corresponding itab to STAB.
    COLLECT STAB.
    Endloop.
    regards,
    amit m.

  • Operation on internal table

    Dear experts,
    I have 2 internal table , 1 inernal table have 4 fields and 10 records in that and the other hv 3 fields and 10 records in each field in that . My task is to transfer the 4th field and records of that of 1st table to 2nd field. Need some help on that..
    Table 1 Table 2
    fields- F1 F2 F3 F4 I1 I2 I3 I4
    A1 B1 C1 D1 A1 P1 Q1
    A2 B2 C2 D2 A2 P2 Q2
    A10 B10 C10 D10 A10 P10 Q10
    Here i want records of f4 in i4. Is insert syntax is the way or any other way we can insert the data from table 1 to table 2.
    Loop at Internal table1 into worka area1.
    modify Internaltable2 from work area1 transporting internaltable2-2nd filed = work area1-4th field.
    endloop.
    i tryed with the above  query but i am getting the following error.
    "No component exist with the name internaltable2-2nd filed".
    Thanks And regards.
    Sumeet
    Moderator Message: Duplicate question from a different ID => Double Trouble.
    Edited by: kishan P on Mar 1, 2011 2:15 PM

    REPORT  ZTEST.
    DATA: BEGIN OF IT_TBL OCCURS 0,
            LINE TYPE I,
          END OF IT_TBL.
    DATA: LV_CNT TYPE I.
    DO 20 TIMES.
      LV_CNT = LV_CNT + 1.
      IT_TBL-LINE = LV_CNT.
      APPEND IT_TBL.
    ENDDO.
    delete it_tbl INDEX 5.
    delete it_tbl INDEX 7.
    delete it_tbl INDEX 12.
    LOOP AT IT_TBL.
      WRITE: / IT_TBL-LINE.
    ENDLOOP.

  • Operations on Hashed Internal tables

    Hello,
    If I want to add a few rows to a hashed internal table, is it not possible at all?
    INSERT and APPEND are not allowed on hashed internal tables.
    Has anybody faced a similar problem?
    What I want to do is..
    LOOP AT hashed_inttable into wa where a = b.
    APPEND wa TO another_hashed_inttable."[APPEND not allowed]
    ENDLOOP.
    Cheers
    Anoop.

    Hi ,
         Insert command will work on HASHED tables on Key access.
    Try with below code...
    REPORT  zhashtable_test            .
    TYPES :
    BEGIN OF t_city,
      city     TYPE sgeocity-city,
      country  TYPE sgeocity-country ,
      latitude TYPE sgeocity-latitude,
    END OF t_city,
    t_city_list TYPE HASHED TABLE OF t_city WITH UNIQUE KEY city country.
    DATA : wa_itab TYPE t_city,
           city_list TYPE t_city_list.
    wa_itab-city = 'Coimbatore'.
    wa_itab-country = 'INDIA'.
    wa_itab-latitude = '150'.
    INSERT wa_itab INTO TABLE city_list .

Maybe you are looking for