What table holds information about TCODES

Hello experts;
       I need to find all the transaction codes used by certain users. Is there a specific table that holds this information.
Thank you so much for your time

Hi,
TSTC is the table which holds all the transaction codes.
TSTCA and TSTCA_C gives the details of the authorization objects for the transacation codes. Using these authorization objects you can analyze whether the user is using the transaction code or not. Give a try. This may help. I am not sure.
Hope this helps.
Please reward if useful.
Thanks,
Srinivasa

Similar Messages

  • What table hold info about Start Page

    what table hold info about Start Page where responsibility and form are chosen when login to Oracle
    step:-
    Login to Oracle apps
    Click on Preferences
    Scroll down to Start page
    Need to find out after you choose the responsibility and it’s value what table name holds that info

    It is a profile option and all profile option values are stored in fnd_profile_options, fnd_profile_option_values, fnd_profile_options_tl
    Note: 201945.1 - How to list E-Business Suite Profile Option values for all levels using SQLPlus
    Note: 282382.1 - How to Search all of the Profile Options for a Specific Value
    Note: 367926.1 - How To Find All Users With A Particular Profile Option Set?
    Thanks,
    Hussein

  • Witch tables store information about targets and errors

    Hello,
    I want to create PL/SQL procedure that will insert strings in my own table statistics when Grid control sent alert via e-mail.
    Example:When grid control send e-mail about istance down my procedure insert string like
    DATE |TARGET_NAME|TARGET_TYPE|MESSAGE
    What repository tables should i refer to get this values?
    Or what tables grid control use to generate e-mail message body?

    Take a look thru the docs .. its all there ...
    an example of one of my queries
    select *
    from mgmt$alert_history
    where alert_state != 'Clear'
    and a.target_type = 'host'

  • CAA3 - what table holds the address?

    Hello experts,
    On screen of CAA3, at the lower part of the screen, there can appear a secondary address which can be different from the address displayed at the top of the screen. I saw something about invoicing. Am I wrong?
    At any rate, I need to use this secondary address on a report. So, I launched CAA3, used F1 on the field, and then the technical data. The field is comes from, or, is mapped onto a structure and not an actual table. My question is where can I find this secondary address, or if it is to be found on ADRC table, what key or address number do I use to get this particular address please?
    Your help is greatly appreciated.
    AG

    Try BUPA_ADDRESSES_GET

  • Reg: Detailed information about Tcodes ST22,SM12,OS06,SM66,ST04

    Hi,
        Can any one give me more details about the tcodes sm37,os06,sm66,st04,sm12.
    thanks
    praveena.

    Praveena,
             ST22 is used to analyze the dumps/runtime errors across the system which occur due to error in programs while execution.
             SM37 is used to check the job details which are run in background also in foreground. Suppose if you are activating a request in an ODS you can see the job log and can analyze the steps it is going through.
              OS06 is Operating system monitor which can contain details like CPU usage, memory usage....
              SM66 is used to see the workprocess overview and the for which user job it is engaged.
              ST04 is used to check the database statistics which is used as a backend for the SAP system.
              SM12 is used to view the lock entries. Sometimes the respective tables get locked due to connection error from the end. And when we try to access the object it gives a message saying that the object is locked by the user. In such a case we can go to SM12 and unlock the object.

  • What table holds a VENDOR EMAIL ADDRESS?

    Hi Forums,
    I am trying to find the table that would hold the email address based on the LIFNR?
    thanks

    Hi,
    It's in ADR6 table.
    Regards,
    Eli

  • What tables hold Discoverer SQL?

    I have to run queries that are the basis for some Discoverer reports. I don't have access to Discoverer itself, so I'm trying to find them in the database. (we have EUL5* as well, and three owners, for a total of 5 sets of tables).
    I have found references to EUL4_OBJS joined to EUL4_SEGMENTS:
    SELECT O.OBJ_NAME, S.SEG_CHUNK1 ||S.SEG_CHUNK2 ||S.SEG_CHUNK3 ||S.SEG_CHUNK4
    FROM DISCOVERER.EUL4_OBJS O
    LEFT OUTER JOIN DISCOVERER.EUL4_SEGMENTS S ON O.OBJ_ID = S.SEG_CUO_ID
    WHERE UPPER(O.OBJ_NAME) LIKE '%PROMO%'
    OR UPPER(O.OBJ_DEVELOPER_KEY) LIKE '%PROMO%'
    OR UPPER(O.OBJ_DESCRIPTION) LIKE '%PROMO%'
    ORDER BY O.OBJ_NAME, S.SEG_SEQUENCE
    But some of the names of Discoverer reports aren't in EUL4_OBJS (or EUL5_OBJS, with any of our owners)
    I can find them in EUL4.DOCUMENTS:
    SELECT *
    FROM DISCOVERER.EUL4_DOCUMENTS
    WHERE UPPER(DOC_NAME) LIKE '%PROMO%';
    How can I get from EUL4.DOCUMENTS to the related SQL code?
    Thanks for reading
    Cornell

    If the SQL is stored in binary, then what is the SQL in EUL5_OBJS and EUL5_SEGMENTS?
    Another developer had selected a report, in Discoverer and opened the SQL, copy/pasted it to an email for me. I found the text of the SQL in EUL5_OBJS and EUL5_SEGMENTS. Unfortunately, it turned out it was the query from the wrong report.
    Anyway, there's at least two stores of SQL: EUL5_DOCUMENTS, in an illegible binary form, and EUL5_OBJS/EUL5_SEGMENTS, in clear text.

  • How can I find This field in what table OBMNG (Open quantity) Tcode Me23n

    hello,
    I need to find this field in a table and not in a structure because I am doing an extract. The structure that has this field is MEPO1320, but i cant pull data from it. I tried st05, where used in  and i could not find it, can someone help? please.

    Hi,
    Go To the structure in SE11 and put the cursor on the required field and try a where used list.In the selection criteria check the checkbox Tables and continue.If not for the field chk for the data element.
    Regards,
    Lakshman.

  • PPOSE: tables store information about users assigend Purch. group

    I want to know all users belonging to a specific Purchase Group EBAN-EKGRP given in the Purchase Requisition. I want to find users belonging to that group. In which tables containing these assignments.
    Thanks for your help.
    CNU

    HRP1000 – Purchase group
    HRP1001 – User’s details

  • Which SNP table store information about LoadPlan and scenario within it.(parallel or serial)

    I've to query when I save my loadPlan for and scenario within it along with information how those scenario execute either parallel or serial.
    Fetch information even before they start.
    Also can Two scenario or LoadPlan have same name in single work repository.

    You can get the information from repository documentation on oracle support - https://support.oracle.com/epmos/faces/DocumentDisplay?id=1903225
    Names must be unique for load plans, same for scenarios although they can be versioned.

  • What table holds the underlying metric data for Tablespace Free Space (MB)?

    10.2.0.4; Windows 64bit
    I'm assuming it's in the SYSMAN schema? I can view it in DBConsole, and can see the Avergae, Low & High values for the last 31days - but want to query the raw data itself.
    Cheers
    Gary

    Check out the Reference Manual: DBA_HIST_TBSPC_SPACE_USAGE
    I suspect the averages and such are derived values in Oracle's queries.
    Edited by: Centinul on Jul 12, 2012 11:08 AM

  • Which table holds INFOSET information?

    Hi,
    Does anybody know which table holds information about infosets?
    For a certain type of analysis I need to find out which source-objects are used in an InfoSet by means of an automated (ABAP) process.

    Hi
    Actually I dont have any Infoset created.
    But if I am not wrong, just "DISPLAY THE DATA" through tyhe particular INFOSET object.
    Check whether you can see the any TABLE NAME...??But I dont think so..It is also more like Multi Provider.
    Just the difference is that Multi Provider...UNION OF SETS and Info set  uses JOINS of SETS.
    Also you dont need run the Automate process for INFOSET.
    Once the INFOPROVIDER or OBJECT you are using in Infoset updated already, then you would be able to see DATA.
    Hope this helps. Also check for more info in SAP HELP.
    check this link:
    http://help.sap.com/saphelp_nw70/helpdata/en/ad/2225391d4f000be10000000a114084/frameset.htm

  • What do people think about the different Generic Java approaches?

    I have seen a lot of different approaches for Generic Java, and when people find problems with each approach the normal response has been: the other approach is worse with such and such a problem, do you have a better way?
    The different approaches I have seen are: (in no particular order)
    Please correct me if I am wrong and add other approaches if they are worthy of mention.
    1) PolyJ - by MIT
    This is a completely different approach than the others, that introduces a new where clause for bounding the types, and involves changing java byte codes in order to meet it's goals.
    Main comments were not a java way of doing things and far too greater risk making such big changes.
    2) Pizza - by Odersky & Wadler
    This aims at extending java in more ways than just adding Generics. The generic part of this was replaced by GJ, but with Pizza's ability to use primitives as generic types removed, and much bigger changes allowing GJ to interface with java.
    Main comments were that Pizza doesn't work well with java, and many things in Pizza were done in parallel with java, hence were no longer applicable.
    3) GJ - by Bracha, Odersky, Stoutamire & Wadler
    This creates classes with erased types and bridging methods, and inserts casts when required when going back to normal java code.
    Main comments are that type dependent operations such as new, instanceof, casting etc can't be done with parametric types, also it is not a very intuitive approach and it is difficult to work out what code should do.
    4) Runtime Generic Information - by Natali & Viroli
    Each instance holds information about its Runtime Type.
    Main comments from people were that this consumes way too much memory as each instance holds extra information about its type, and the performance would be bad due to checking Type information at runtime that would have been known at compile.
    5) NextGen - by Cartwright & Steele
    For each parameterized class an abstract base class with types erased is made and then for each new type a lightweight wrapper class and interface are created re-using code from the base class to keep the code small.
    Main comments from people were that this approach isn't as backwards compatible as GJ due to replacing the legacy classes with abstract base classes which can't be instantiated.
    6) .NET common runtime - by Kennedy & Syme
    This was written for adding Generics to C#, however the spec is also targeted at other languages such as VB.
    Main comments from people were that this approach isn't java, hence it is not subject to the restrictions of changing the JVM like java is.
    7) Fully Generated Generic Classes - by Agesen, Freund & Mitchell
    For each new type a new class is generated by a custom class loader, with all the code duplicated for each different type.
    Main comments from people were that the generated code size gets too big, and that it is lacking a base class for integration with legacy code.
    8) JSR-14 - by Sun
    This is meant to come up with a solution Generic Solution to be used in java. Currently it is heavily based on GJ and suffering from all the same problems as GJ, along with the fact that it is constantly undergoing change and so no one knows what to expect.
    See this forum for comments about it.
    As if we didn't have enough approaches already, here is yet another one that hopefully has all of the benefits, and none of the problems of the other approaches. It uses information learnt while experimenting with the other approaches. Now when people ask me if I think I have a better approach, I will have somewhere to point them to.
    (I will be happy to answer questions concerning this approach).
    9) Approach #x - by Phillips
    At compile time 1 type is made per generic type with the same name.
    e.g.class HashSet<TypeA> extends AbstractSet<TypeA> implements Cloneable, Serializable will be translated to a type: class HashSet extends AbstractSet implements Cloneable, SerializableAn instance of the class using Object as TypeA can now be created in 2 different ways.
    e.g.Set a = new HashSet();
    Set<Object> b = new HashSet<Object>();
    //a.getClass().equals(b.getClass()) is trueThis means that legacy class files don't even need to be re-compiled in order to work with the new classes. This approach is completely backwards compatible.
    Inside each type that was created from a generic type there is also some synthetic information.
    Information about each of the bounding types is stored in a synthetic field.
    Note that each bounding type may be bounded by a class and any number of interfaces, hence a ';' is used to separate bounding types. If there is no class Object is implied.
    e.g.class MyClass<TypeA extends Button implements Comparable, Runnable; TypeB> will be translated to a type: class MyClass {
      public static final Class[][] $GENERIC_DESCRIPTOR = {{Button.class, Comparable.class, Runnable.class}, {Object.class}};This information is used by a Custom Class Loader before generating a new class in order to ensure that the generic types are bounded correctly. It also gets used to establish if this class can be returned instead of a generated class (occurs when the generic types are the same as the bounding types, like for new HashSet<Object> above).
    There is another synthetic field of type byte[] that stores bytes in order for the Custom Class Loader to generate the new Type.
    There are also static methods corresponding to each method that contain the implementation for each method. These methods take parameters as required to gain access to fields, contructors, other methods, the calling object, the calling object class etc. Fields are passed to get and set values in the calling object. Constructors are passed to create new instances of the calling object. Other methods are passed when super methods are called from within the class. The calling object is almost always passed for non static methods, in order to do things with it. The class is passed when things like instanceof the generated type need to be done.
    Also in this class are any non private methods that were there before, using the Base Bounded Types, in order that the class can be used exactly as it was before Generics.
    Notes: the time consuming reflection stuff is only done once per class (not per instance) and stored in static fields. The other reflection stuff getting done is very quick in JDK1.4.1 (some earlier JDKs the same can not be said).
    Also these static methods can call each other in many circumstances (for example when the method getting called is private, final or static).
    As well as the ClassLoader and other classes required by it there is a Reflection class. This class is used to do things that are known to be safe (assuming the compiler generated the classes correctly) without throwing any exceptions.
    Here is a cut down version of the Reflection class: public final class Reflection {
      public static final Field getDeclaredField(Class aClass, String aName) {
        try {
          Field field = aClass.getDeclaredField(aName);
          field.setAccessible(true);
          return field;
        catch (Exception ex) {
          throw new Error(ex);
      public static final Object get(Field aField, Object anObject) {
        try {
          return aField.get(anObject);
        catch (Exception ex) {
          throw new Error(ex);
      public static final void set(Field aField, Object anObject, Object aValue) {
        try {
          aField.set(anObject, aValue);
        catch (Exception ex) {
          throw new Error(ex);
      public static final int getInt(Field aField, Object anObject) {
        try {
          return aField.getInt(anObject);
        catch (Exception ex) {
          throw new Error(ex);
      public static final void setInt(Field aField, Object anObject, int aValue) {
        try {
          aField.setInt(anObject, aValue);
        catch (Exception ex) {
          throw new Error(ex);
    }Last but not least, at Runtime one very lightweight wrapper class per type is created as required by the custom class loader. Basically the class loader uses the Generic Bytes as the template replacing the erased types with the new types. This can be even faster than loading a normal class file from disk, and creating it.
    Each of these classes has any non private methods that were there before, making calls to the generating class to perform their work. The reason they don't have any real code themselves is because that would lead to code bloat, however for very small methods they can keep their code inside their wrapper without effecting functionality.
    My final example assumes the following class name mangling convention:
    * A<component type> - Array
    * b - byte
    * c - char
    * C<class name length><class name> - Class
    * d - double
    * f - float
    * i - int
    * l - long
    * z - boolean
    Final Example: (very cut down version of Vector)public class Vector<TypeA> extends AbstractList<TypeA> implements RandomAccess, Cloneable, Serializable {
      protected Object[] elementData;
      protected int elementCount;
      protected int capacityIncrement;
      public Vector<TypeA>(int anInitialCapacity, int aCapacityIncrement) {
        if (anInitialCapacity < 0) {
          throw new IllegalArgumentException("Illegal Capacity: " + anInitialCapacity);
        elementData = new Object[initialCapacity];
        capacityIncrement = capacityIncrement;
      public synchronized void setElementAt(TypeA anObject, int anIndex) {
        if (anIndex >= elementCount) {
          throw new ArrayIndexOutOfBoundsException(anIndex + " >= " + elementCount);
        elementData[anIndex] = anObject;
    }would get translated as:public class Vector extends AbstractList implements RandomAccess, Cloneable, Serializable {
      public static final Class[][] $GENERIC_DESCRIPTOR = {{Object.class}};
      public static final byte[] $GENERIC_BYTES = {/*Generic Bytes Go Here*/};
      protected Object[] elementData;
      protected int elementCount;
      protected int capacityIncrement;
      private static final Field $0 = Reflection.getDeclaredField(Vector.class, "elementData"),
                                 $1 = Reflection.getDeclaredField(Vector.class, "elementCount"),
                                 $2 = Reflection.getDeclaredField(Vector.class, "capacityIncrement");
      static void $3(int _0, Field _1, Object _2, Field _3, int _4) {
        if (_0 < 0) {
          throw new IllegalArgumentException("Illegal Capacity: " + _0);
        Reflection.set(_1, _2, new Object[_0]);
        Reflection.setInt(_3, _2, _4);
      static void $4(int _0, Field _1, Object _2, Field _3, Object _4) {
        if (_0 >= Reflection.getInt(_1, _2)) {
          throw new ArrayIndexOutOfBoundsException(_0 + " >= " + Reflection.getInt(_1, _2));
        ((Object[])Reflection.get(_3, _2))[_0] = _4;
      public Vector(int anInitialCapacity, int aCapacityIncrement) {
        $3(anInitialCapacity, $0, this, $2, aCapacityIncrement);
      public synchronized void setElementAt(Object anObject, int anIndex) {
        $4(anIndex, $1, this, $0, anObject);
    } and new Vector<String> would get generated as:public class Vector$$C16java_lang_String extends AbstractList$$C16java_lang_String implements RandomAccess, Cloneable, Serializable {
      protected Object[] elementData;
      protected int elementCount;
      protected int capacityIncrement;
      private static final Field $0 = Reflection.getDeclaredField(Vector$$C16java_lang_String.class, "elementData"),
                                 $1 = Reflection.getDeclaredField(Vector$$C16java_lang_String.class, "elementCount"),
                                 $2 = Reflection.getDeclaredField(Vector$$C16java_lang_String.class, "capacityIncrement");
      public Vector$$C16java_lang_String(int anInitialCapacity, int aCapacityIncrement) {
        Vector.$3(anInitialCapacity, $0, this, $2, aCapacityIncrement);
      public synchronized void setElementAt(String anObject, int anIndex) {
        Vector.$4(anIndex, $1, this, $0, anObject);
    }Comparisons with other approaches:
    Compared with PolyJ this is a very java way of doing things, and further more it requires no changes to the JVM or the byte codes.
    Compared with Pizza this works very well with java and has been designed using the latest java technologies.
    Compared with GJ all type dependent operations can be done, and it is very intuitive, code does exactly the same thing it would have done if it was written by hand.
    Compared with Runtime Generic Information no extra information is stored in each instance and hence no extra runtime checks need to get done.
    Compared with NextGen this approach is completely backwards compatible. NextGen looks like it was trying to achieve the same goals, but aside from non backwards compatibility also suffered from the fact that Vector<String> didn't extend AbstractList<String> causing other minor problems. Also this approach doesn't create 2 types per new types like NextGen does (although this wasn't a big deal anyway). All that said NextGen was in my opinion a much better approach than GJ and most of the others.
    Compared to .NET common runtime this is java and doesn't require changes to the JVM.
    Compared to Fully Generated Generic Classes the classes generated by this approach are very lightweight wrappers, not full blown classes and also it does have a base class making integration with legacy code simple. It should be noted that the functionality of the Fully Generated Generic Classes is the same as this approach, that can't be said for the other approaches.
    Compared with JSR-14, this approach doesn't suffer from GJ's problems, also it should be clear what to expect from this approach. Hopefully JSR-14 can be changed before it is too late.

    (a) How you intend generic methods to be translated.
    Given that Vector and Vector<Object> are unrelated types,
    what would that type be represented as in the byte code of
    the method? In my approach Vector and Vector<Object> are related types. In fact the byte code signature of the existing method is exactly the same as it was in the legacy code using Vector.
    To re-emphasize what I had said when explaining my approach:
    System.out.println(Vector.class == Vector<Object>.class);  // displays true
    System.out.println(Vector.class == Vector<String>.class);  // displays false
    Vector vector1 = new Vector<Object>(); // legal
    Vector<Object> vector2 = new Vector();  // legal
    // Vector vector3 = new Vector<String>(); // illegal
    // Vector<String> vector4 = new Vector();  // illegal
    Vector<String> vector5 = new Vector<String>();  // legal
    You must also handle the case where the type
    parameter is itself a parameterized type in which the type
    parameter is not statically bound to a ground instantiation.This is also very straightforward: (let me know if I have misunderstood you)
    (translation of Vector given in my initial description)
    public class SampleClass<TypeA> {
      public static void main(String[] args) {
        System.out.println(new Vector<Vector<TypeA>>(10, 10));
    }would get translated as:public class SampleClass {
      public static final Class[][] $GENERIC_DESCRIPTOR = {{Object.class}};
      public static final byte[] $GENERIC_BYTES = {/*Generic Bytes Go Here*/};
      private static final Constructor $0 = Reflection.getDeclaredConstructor(Vector$$C16java_util_Vector.class, new Class[] {int.class, int.class});
      static void $1(Constructor _0, int _1, int _2) {
        try {
          System.out.println(Reflection.newInstance(_0, new Object[] {new Integer(_1), new Integer(_2)}));
        catch (Exception ex) {
          throw (RuntimeException)ex;
      public static void main(String[] args) {
        $1($0, 10, 10);
    }and SampleClass<String> would get generated as:public class SampleClass$$C16java_lang_String {
      private static final Constructor $0 = Reflection.getConstructor(Vector$$C37java_util_Vector$$C16java_lang_String.class, new Class[] {int.class, int.class});
      public static void main(String[] args) {
        SampleClass.$1($0, 10, 10);
    Also describe the implementation strategy for when these
    methods are public or protected (i.e. virtual).As I said in my initial description that for non final, non static, non private method invocations a Method may be passed into the implementing synthetic method as a parameter.
    Note: the following main method will display 'in B'.
    class A {
      public void foo() {
        System.out.println("in A");
    class B extends A {
      public void foo() {
        System.out.println("in B");
    public class QuickTest {
      public static void main(String[] args) {
        try {
          A.class.getMethod("foo", null).invoke(new B(), null);
        catch (Exception ex) {}
    }This is very important as foo() may be overwritten by a subclass as it is here. By passing a Method to the synthetic implementation this guarantees that covariance, invariance and contra variance all work exactly the same way as in java. This is a fundamental problem with many other approaches.
    (b) The runtime overhead associated with your translationAs we don't have a working solution to compare this to, performance comments are hard to state, but I hope this helps anyway.
    The Class Load time is affected in 4 ways. i) All the Generic Bytes exist in the Base Class, hence they don't need to be read from storage. ii) The custom class loader, time to parse the name and failed finds before it finally gets to define the class. iii) The generation of the generic bytes to parametric bytes (basically involves changing bytes from the Constant Pool worked out from a new Parametric type, Utf8, Class and the new Parametric Constant types may all be effected) iv) time to do the static Reflection stuff (this is the main source of the overhead). Basically this 1 time per class overhead is nothing to be concerned with, and Sun could always optimize this part further.
    The normal Runtime overhead (once Classes have been loaded) is affected mainly by reflection: On older JDKs the reflection was a lot slower, and so might have made a noticeable impact. On newer JDKs (since 1.4 I think), the reflection performance has been significantly improved. All the time consuming reflection is done once per class (stored in static fields). The normal reflection is very quick (almost identical to what is getting done without reflection). As the wrappers simply include a single method call to another method, these can be in-lined and hence made irrelevant. Furthermore it is not too difficult to make a parameter that would include small methods in the wrapper classes, as this does not affect functionality in the slightest, however in my testing I have found this to be unnecessary.
    (c) The space overhead (per instantiation)There are very small wrapper classes (one per new Type) that simply contain all non private methods, with single method calls to the implementing synthetic method. They also include any fields that were in the original class along with other synthetic fields used to store reflected information, so that the slow reflection only gets done once per new Type.
    (d) The per-instance space overheadNone.
    (e) Evidence that the proposed translation is sound and well-defined for all relevant cases (see below)Hope this is enough, if not let me know what extra proof you need.
    (f) Evidence for backward compatibility
    (For example, how does an old class file that passes a Vector
    to some method handle the case when the method receives a Vector<T>
    where T is a type parameter? In your translation these types are unrelated.)As explained above, in my approach these are only unrelated for T != Object, in the legacy case T == Object, hence legacy code passing in Vector is exactly the same as passing in Vector<Object>.
    (g) Evidence for forward compatibility
    (How, exactly, do class files that are compiled with a generics compiler run on an old VM)They run exactly the same way, the byte codes from this approach are all legal java, and all legal java is also legal in this approach. In order to take advantage of the Generics the Custom Class Loader would need to be used or else one would get ClassNotFoundExceptons, the same way they would if they tried using Collections on an old VM without the Collections there. The Custom Class Loader even works on older VMs (note it may run somewhat slower on older VMs).
    (h) A viable implementation strategyType specific instantiations are at Class Load time, when the Custom Class Loader gets asked for a new Class, it then generates it.
    The type specific instantiations are never shipped as they never get persisted. If you really wanted to save them all you need to do is save them with the same name (with the $$ and _'s etc), then the class loader would find them instead of generating them. There is little to be gained by doing this and the only reason I can think of for doing such a thing would be if there was some reason why the target VM couldn't use the Custom Class Loader (the Reflection class would still need to be sent as well, but that is nothing special). Basically they are always generated at Runtime unless a Class with the same name already exists in which case it would be used.
    The $GENERIC_DESCRIPTOR and $GENERIC_BYTES from the base class along with the new Type name are all that is required to generate the classes at runtime. However many other approaches can achieve the same thing for the generation, and approaches such as NextGen's template approach may be better. As this generation is only done once per class I didn't put much research into this area. The way it currently works is that the $GENERIC_DESCRIPTOR are basically used to verify that a malicious class files is not trying to create a non Type Safe Type, ie new Sample<Object>() when the class definition said class Sample<TypeA extends Button>. The $GENERIC_BYTES basically correspond to the normal bytes of a wrapper class file, except that in the constant pool it has some constants of a new Parametric Constant type that get replaced at class load time. These parametric constants (along with possibly Utf8 and Class constants) are replaced by the Classes at the end of the new type name, a little more complex than that but you probably get the general idea.
    These fine implementation details don't affect the approach so much anyway, as they basically come down to class load time performance. Much of the information in the $GENERIC_BYTES could have been worked out by reflection on the base type, however at least for now simply storing the bytes is a lot easier.
    Note: I have made a small syntax change to the requested class:
    public T(X datum) --> public T<X>(X datum)
    class T<X> {
      private X datum;
      public T<X>(X datum) {
        this.datum = datum;
      public T<T<X>> box() {
        return new T<T<X>>(this);
      public String toString() {
        return datum.toString();
      public static void main(String[] args) {
        T<String> t = new T<String>("boo!");
        System.out.println(t.box().box());
    }would get translated as:
    class T {
      public static final Class[][] $GENERIC_DESCRIPTOR = {{Object.class}};
      public static final byte[] $GENERIC_BYTES = {/*Generic Bytes Go Here*/};
      private Object datum;
      private static final Field $0 = Reflection.getDeclaredField(T.class, "datum");
      private static final Constructor $1 = Reflection.getDeclaredConstructor(T$$C1T.class, new Class[] {T.class});
      static void $2(Field _0, Object _1, Object _2) {
        Reflection.set(_0, _1, _2);
      static Object $3(Constructor _0, Object _1) {
        try {
          return Reflection.newInstance(_0, new Object[] {_1});
        catch (Exception ex) {
          throw (RuntimeException)ex;
      static String $4(Field _0, Object _1) {
        return Reflection.get(_0, _1).toString();
      static void $5() {
        T$$C16java_lang_String t = new T$$C16java_lang_String("boo!");
        System.out.println(t.box().box());
      public T(Object datum) {
        $2($0, this, datum);
      public T$$C1T box() {
        return (T$$C1T)$3($1, this);
      public String toString() {
        return $4($0, this);
      public static void main(String[] args) {
        $5();
    }as the generic bytes aren't very meaningful and by no means a requirement to this approach (NextGen's template method for generation may work just as well), here are the generated classes with some unused code commented out instead:
    class T$$C28T$$C22T$$C16java_lang_String {
      private T$$C22T$$C16java_lang_String datum;
      private static final Field $0 = Reflection.getDeclaredField(T$$C28T$$C22T$$C16java_lang_String.class, "datum");
    //  private static final Constructor $1 = Reflection.getDeclaredConstructor(T$$C34T$$C28T$$C22T$$C16java_lang_String.class, new Class[] {T$$C28T$$C22T$$C16java_lang_String.class});
      public T$$C28T$$C22T$$C16java_lang_String(T$$C22T$$C16java_lang_String datum) {
        T.$2($0, this, datum);
    //  public T$$C34T$$C28T$$C22T$$C16java_lang_String box() {
    //    return (T$$C34T$$C28T$$C22T$$C16java_lang_String)T.$3($1, this);
      public String toString() {
        return T.$4($0, this);
      public static void main(String[] args) {
        T.$5();
    class T$$C22T$$C16java_lang_String {
      private T$$C16java_lang_String datum;
      private static final Field $0 = Reflection.getDeclaredField(T$$C22T$$C16java_lang_String.class, "datum");
      private static final Constructor $1 = Reflection.getDeclaredConstructor(T$$C28T$$C22T$$C16java_lang_String.class, new Class[] {T$$C22T$$C16java_lang_String.class});
      public T$$C22T$$C16java_lang_String(T$$C16java_lang_String datum) {
        T.$2($0, this, datum);
      public T$$C28T$$C22T$$C16java_lang_String box() {
        return (T$$C28T$$C22T$$C16java_lang_String)T.$3($1, this);
      public String toString() {
        return T.$4($0, this);
      public static void main(String[] args) {
        T.$5();
    class T$$C1T {
      private T datum;
      private static final Field $0 = Reflection.getDeclaredField(T$$C1T.class, "datum");
    //  private static final Constructor $1 = Reflection.getDeclaredConstructor(T$$C6T$$C1T.class, new Class[] {T$$C1T.class});
      public T$$C1T(T datum) {
        T.$2($0, this, datum);
    //  public T$$C6T$$C1T box() {
    //    return (T$$C6T$$C1T)T.$3($1, this);
      public String toString() {
        return T.$4($0, this);
      public static void main(String[] args) {
        T.$5();
    class T$$C16java_lang_String {
      private String datum;
      private static final Field $0 = Reflection.getDeclaredField(T$$C16java_lang_String.class, "datum");
      private static final Constructor $1 = Reflection.getDeclaredConstructor(T$$C22T$$C16java_lang_String.class, new Class[] {T$$C16java_lang_String.class});
      public T$$C16java_lang_String(String datum) {
        T.$2($0, this, datum);
      public T$$C22T$$C16java_lang_String box() {
        return (T$$C22T$$C16java_lang_String)T.$3($1, this);
      public String toString() {
        return T.$4($0, this);
      public static void main(String[] args) {
        T.$5();
    }the methods from the Reflection class used in these answers not given in my initial description are:
      public static final Object newInstance(Constructor aConstructor, Object[] anArgsArray) throws Exception {
        try {
          return aConstructor.newInstance(anArgsArray);
        catch (InvocationTargetException ex) {
          Throwable cause = ex.getCause();
          if (ex instanceof Exception) {
            throw (Exception)ex;
          throw new Error(ex.getCause());
        catch (Exception ex) {
          throw new Error(ex);
      public static final Constructor getDeclaredConstructor(Class aClass, Class[] aParameterTypesArray) {
        try {
          Constructor constructor = aClass.getDeclaredConstructor(aParameterTypesArray);
          constructor.setAccessible(true);
          return constructor;
        catch (Exception ex) {
          throw new Error(ex);
      }

  • Information about forms

    Hi.
    Does anybody knows, what is the name of DB table where information about all existing OIM (903) forms (fields, version history) is stored?

    Check these three tables:
    SDK : It stores the information about form.
    SDC : It stores the information about version and form fields.
    SDH : It stores the information about nested forms.
    Thanks,
    Devendra Jain

  • Get information about Weblogic Application Server knowing only port number.

    Hi.
    What kind of information about Weblogic Application Server can I get if I know only port which web application is deployed?
    If it is true, how can I get it?

    1, If you want a opportunity run your code at server instance started or restarted, please see:
    http://download.oracle.com/docs/cd/E13222_01/wls/docs81/config_xml/StartupClass.html
    2, or you can package your code in a standard web application, deploy into the server instance.
    a servlet required to start you service.

Maybe you are looking for