FFT help

  Hello all,
I have a code that is tracing data from a Optical Spectrum Analyzer when certain conditions are met. (fft.VI) The data collected is a reflectance spectrum of a sensor.State 3 is the state that is collecting the data.
 I want to make some data processing on the collected data. I attached a sample data set that is obtained by the code. 
 What I want is converting the power array from dbm scale to mW scale (I have done that), filtering the data with a bandpass filter (the expected frequency of the array starts from 100e-6 and goes up to 200e-6), normalizing data and finding the frequency of the spectrum. I found the necessary VIs and wired everthing but it gave some meaningless results.
Why do you think is wrong in the code? (the expected frequency should be around 130e-6 but according to the code it is 9.645)
 Thank you
Attachments:
code_saturday.zip ‏195 KB
data set.xls ‏162 KB

Looks like you just started out, because there are some very strange constructs that either make little sense or are done way too complicated.
( e.g. FFT.vi: State 1: The while loop consumes all CPU doing practically nothing. It needs a small wait. ["collect data?"_AND_ "true"] is the same as ["collect data?"]. You can delete the "boolean AND" and the TRUE diagram constant, they make no difference. State 3: don't operate on entire paths as strings, because you will break platform independence. Use path constants and "build path" and operate only on filenames as strings. You should create some data dependency to ensure that resetting the history data occurs before the loops start. Why is the number of elements a hidden control that is zero instead of 30? Use a diagram constant! The subVI "get last 30 elements could be done with a simple "rotate array" and "replace array element", all that code is way too complicated. etc. etc....)
First of all, whe you attach multiple VIs, please tell us what the name of the toplevel VI is to make our life easier. It's not obvious at first.
Back to your original question. You are feeding a plain 1D array to the FFT, so there is no dt information, this also means that the df of the transform will need to be calculated based on the correct dt that you need to obtain from elsewhere. Once you have df, you can set the x-axis of the transform accordingly (xo, dx). (more information)
LabVIEW Champion . Do more with less code and in less time .

Similar Messages

  • Where can I find blocks

    Hey everyone,
    I can not find blocks in the Labview 8.5 which i indicated in attachement view. If someone knew where are they in Labview? 
    Please for help
    Marek

    Thank you Christian,
    FFT helped me a lot.
    Have a nice work!
    Marek

  • I'm trying to do a FFT using I and Q Data, I need help.

    I’m collecting data on an Agilent 89600 VSA, and storing it
    to a file, it stores the data in I and Q format (real and imaginary) in 2 columns.  Can read the data then using “Re/Im to
    complex” (math function) I go to the “FFT.vi”. 
    After that is done how do I get it scaled and display it on a graph?  Everything I have tried has not worked.  If anyone can help please do.
    LabVIEW 7.1, Windows XP
    Thank you
    Bob

    Hi, Bob.
    This KnowledgeBase discusses how to display complex numbers in a graph. Let me know if this doesn't answer your question.
    Have a nice afternoon!
    Sarah K.
    Search PME
    National Instruments

  • Need help with FFT for Vibration Analysis

    Hello all,
    I am acquiring data into LabVIEW from an accelerometer. The acceleration (in g's as determined within MAX) time domain graph works fine. However, I wish to do analysis using an FFT spectrum. All my attemps at wiring my time domain acceleration data into various FFT.vi's have resulted in blank graphs, including the sound and vibration module VI's. I am accquiring at 2000Hz. Obviously I am doing something wrong. Can anybody shed some light on how I can get a successful FFT working?
    Kind Regards
    Adam

    I attached an example that works well for me - gens a signal, converts to waveform data type, does FFT
    Preston Johnson
    Principal Sales Engineer
    Condition Monitoring Systems
    Vibration Analyst III - www.vibinst.org, www.mobiusinstitute.com
    National Instruments
    [email protected]
    www.ni.com/mcm
    www.ni.com/soundandvibration
    www.ni.com/biganalogdata
    512-683-5444
    Attachments:
    Generate Signal and SV FFT.vi ‏20 KB
    gen sig and fft.JPG ‏32 KB
    gen sig and fft.JPG ‏32 KB

  • IMAQ FFT destination image, help!

    Hello,
    I am new to using LabVIEW so please bear with me!
    I am reading/working my way through the IMAQ user manual for LabVIEW and I am trying to get IMAQ FFT working.  But I have trouble finding the VI that the destination image of IMAQ FFT VI should be connected to. At the second it gives me an error when I try and run the program.
    At the second I am really struggling to find the correct VI
    Also I am little unclear what the destination image is for, does the image need to be saved?
    Many thanks,
    Jack

    Hi,
    For IMAQ FFT Destination Image should be connected and must be complex:
    Andrey.
    PS
    Forum for Vision-related questions here
    Message Edited by Andrey Dmitriev on 01-28-2009 12:52 PM
    Attachments:
    FFT Sample.png ‏24 KB
    FFT Sample.vi ‏41 KB

  • Cooley turkey FFT Algorithm Help

    Hello fellow java people, I am trying to understand the adaptation of the cooley Turkey algorithm in the link below.
    http://www.cs.princeton.edu/introcs/97data/FFT.java.html
    One of the main things that i dont understand is the complex object which is being used. I may have overlooked it when I was reviewing the code but I cannot see the complex object anywhere.
    Can someone please tell me where if any where it is defined as I need to know what the input for this algorithm would be.
    Cheers in advance

    found out by myself, complex.java in different part.

  • MyRIO FPGA FFT Express VI timing analysis for multiple input mode - trying to perform fft's on a 3-axis accelerometer

    Hi Everyone!
    Project Background:
    I've been working with the myRIO FPGA in an attempt to generate an application capable of sampling a tri-axis accelerometer and performing an fft on each axis. I've successfully developed an application for a single axis, but attempting to duplicate the code to sample the second and third axes in parallel results in an estimated 150% resource utilization for the tiny FPGA's LUT's. Additionally, I'm looking to avoid sequentially processing each accelerometer input using triggers and a single fft block because that reduces my fft update frequency significantly (e.g. I can't calculate another fft for input 1 until I calculate an fft for inputs 2 and 3).
    After reading up on the fft vi, I'm thinking that I can use the M-interval input indexes / Continuous output indexes Input/Output Index Pattern mode. My thought is that I can edit the vi to remove any math that "recombines" these three vectors into a single fft, resulting in 3 separate fft's. I'm also hoping that this process requires less time than using the sequential method described above. 
    The Questions:
    1. Has anyone done an fft on three inputs using the myRIO at sampling rates > 20kHz and fft sizes of 1024 or larger? If so, I may just be lacking some proper resource management.
    2. Does anyone know where to find timing information on the M-interval input indexes / Continuous output indexes Input/Output Index Pattern mode? The manual only provides timing diagrams for singel channel / single input modes. I don't want to waste my time modifying the vi if it will still take 3x as long (assuming modifying the vi is even a possibility).
    Further Information:
    I already have an application written that samples the accelerometers at >20kHz and then performs the fft on the main processor, but now I'm looking to see if it is possible to perform all signal processing on the FPGA side. The processor performs decently enough, but the timing is not as consistent as I would like it to be. Lastly, I am aware that the myRIO itself has a built in accelerometer, but I need to mount the accelerometer in an environment where the myRIO would probably be damaged and definitely cannot fit.
    Any thoughts are much appreciated! The excessive FPGA compile times for this thing make the old guess and check method less appealing.
    -Chris 

    Hi Chris,
    Thanks for posting and the detailed background on the project! To answer some of your questions:
    1. The FFT Express VI does use a significant amount of space. The FPGA on the myRIO is somewhat limited space-wise. Your best option may to implement the FFT for 1 channel on the FPGA and the other two on the RT side.
    2. I converted the FFT Express VI to a subVI and I am not sure if you can trim too much code from it. The subVI is also very complex so re-working it would be a significant amount of work. I could not find much documentation on M-interval input indexes / Continuous output indexes Input/Output Index Pattern mode timing. 
    I hope that this helps!
    Thanks,
    Frank
    Application Engineer
    National Instruments

  • Bus error - Help!

    Hi,
    I've been asked to see if I can fix a C program so that it will run on a mac. It currently compiles and runs perfectly on a linux machine, but as soon as you run it on a mac, it will compile, but quit with a bus error very early on. The full code is here:
    // Program for the construction of cartograms (density-equalizing map
    // projections) using the Gastner-Newman technique. The program needs polygon
    // coordinates and a count of cases in each region as input, calculates the new
    // coordinates, and writes these to a file. Postscript images of the original
    // map and the cartogram are created.
    // WRITTEN BY MICHAEL GASTNER, September 20, 2004.
    // If you use output created by this program please acknowledge the use of this
    // code and its first publication in:
    // "Generating population density-equalizing maps", Michael T. Gastner and
    // M. E. J. Newman, Proceedings of the National Academy of Sciences of the
    // United States of America, vol. 101, pp. 7499-7504, 2004.
    // The input coordinates in MAPGENFILE must be in ArcInfo "generate" format of
    // the type:
    // 1
    // 0.3248690E+06 0.8558454E+06
    // 0.3248376E+06 0.8557575E+06
    // 0.3248171E+06 0.8556783E+06
    // 0.3247582E+06 0.8556348E+06
    // 0.3246944E+06 0.8555792E+06
    // 0.3246167E+06 0.8555253E+06
    // 0.3250221E+06 0.8557324E+06
    // 0.3249436E+06 0.8557322E+06
    // 0.3248690E+06 0.8558454E+06
    // END
    // 1
    // 0.3248690E+06 0.8558454E+06
    // 0.3249651E+06 0.8558901E+06
    // 0.3250519E+06 0.8559769E+06
    // 0.3250691E+06 0.8561246E+06
    // 0.3249678E+06 0.8560541E+06
    // 0.3249003E+06 0.8560088E+06
    // 0.3076424E+06 0.8477603E+06
    // 0.3075691E+06 0.8477461E+06
    // 0.3075595E+06 0.8476719E+06
    // END
    // 2
    // 0.6233591E+06 0.6056502E+06
    // 0.6235193E+06 0.6056467E+06
    // 0.6235054E+06 0.6055372E+06
    // 0.7384296E+06 0.2334260E+06
    // 0.7383532E+06 0.2345770E+06
    // END
    // END
    // The number of cases in CENSUSFILE must be given in the form
    // region #cases (optional comment), e. g:
    // 43 0.9 Alabama
    // 51 0.3 Alaska
    // 37 0.8 Arizona
    // 47 0.6 Arkansas
    // 25 5.4 California
    // 32 0.8 Colorado
    // 19 0.8 Connecticut
    // 29 0.3 Delaware
    // 28 0.3 District of Columbia
    // 49 2.5 Florida
    // 45 1.3 Georgia
    // 1 0.4 Hawaii
    // The output coordinates are written to CARTGENFILE in ArcInfo "generate"
    // format. A postscript image of the original input is prepared as MAP2PS,
    // an image of the cartogram as CART2PS.
    // Modified on Oct 29, 2004. The number of divisions in each dimension lx, ly
    // will now be determined from the input map. Also fixed array bound
    // violations in intpol and newt2, and centered the ps-files.
    // Modified on Dec 3, 2004. Introduced pointers bbmaxx,bbmaxy,bbminx,bbminy -
    // the bounding box coordinates for each polygon - to reduce calculations in
    // crnmbr. Thanks to Chris Brunsdon for the suggestion.
    // Program now terminates with error message if there is no density specified
    // in CENSUSFILE for a region on the map.
    // "Donut" polygons are now handled properly. Polygons oriented clockwise will
    // be considered exterior boundaries. If they are oriented anti-clockwise they
    // are holes inside an enclosing polygon. (Unconventional for mathematicians,
    // but this is ArcGIS standard.) The identifier is either that of the enclosing
    // polygon, or -99999 in which case it is a hole in the preceding polygon.
    // The population can now be a floating-point number.
    // If a region contains exactly zero population, it will be replaced by
    // MINPOPFAC times the smallest positive population in any region.
    // Obviously, MINPOPFAC should be <1, I will set it to 0.1 by default. This
    // should reduce the value of sigma necessary for the integrator to finish
    // properly.
    // Modified on March 31, 2005. Initialized maxchange in nonlinvoltra() as
    // INFTY. Replaced crnmbr() by a similar, but faster routine interior().
    // Many thanks to Stuart Anderson for pointing out this shortcut.
    // TO DO LIST:
    // - Do Gaussian blur within nonlinvoltra as a simple call to calcv and
    // eliminate gaussianblur().
    // - Modify the NR code for the FFTs to deal more naturally with the fencepost
    // issue. No more copying of arrays in sinft and cosft.
    // - Write truly two-dimensional versions of coscosft, cossinft, and sincosft.
    // See Chan and Ho: A new two-dimensional fast cosine transform algorithm,
    // IEEE Transactions on Signal Processing, 39, 481ff. (1991).
    // - Read polygon data directly from shapefile instead of generate file.
    // - Reorganize data structures. It is currently quite a mess to read.
    // Inclusions
    #include <math.h>
    #include <stdio.h>
    #include <stdlib.h>
    // Definitions
    #define CART2PS "./cart.ps","w" // Cartogram image.
    #define CARTGENFILE "./cartogram.gen" // Cartogram generate file.
    #define CENSUSFILE "./census.dat","r" // Input.
    #define CONVERGENCE 1e-100 // Convergence criterion for integrator.
    // #define DISPLFILE "./displ.dat","w"
    #define FALSE 0
    #define HINITIAL 1e-4 // Initial time step size in nonlinvoltra.
    #define IMAX 50 // Maximum number of iterations in Newton-Raphson routine.
    #define INFTY 1e100
    #define LINELENGTH 1000
    #define MAP2PS "map.ps","w" // Map image.
    #define MAPGENFILE "./map.gen","r" // Input coordinates.
    #define MAX(a,b) ((b>a)?(b):(a))
    #define MAXINTSTEPS 3000 // Maximum number of time steps in nonlinvoltra.
    #define MAXNSQLOG 18 // The number of sample points for rho_0 is <~2^MAXNSQLOG.
    #define MIN(a,b) ((b<a)?(b):(a))
    #define MINH 1e-5 // Smallest permitted time step in the integrator.
    #define MINPOPFAC 0.1 // Replace 0 population by a fraction of the minimum.
    #define NR_END 1
    #define NSUBDIV 1 // Number of linear subdivisions for digitizing the density.
    #define PADDING 1.5 // Determines space between map and boundary.
    #define PI 3.141592653589793
    #define SIGMA 0.1 // Initial width of Gaussian blur.
    #define SIGMAFAC 1.2 // Increase sigma by this factor. Must be > 1.
    #define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr;
    #define TIMELIMIT 1e8 // Maximum time allowed in integrator.
    #define TOLF 1e-3 // Sensitivity w. r. t. function value in newt2.
    #define TOLINT 1e-3 // Sensitivity of the integrator.
    #define TOLX 1e-3 // Sensitivity w. r. t. independent variables in newt2.
    #define TRUE !FALSE
    // Types
    typedef int BOOLEAN;
    typedef struct
    float x;
    float y;
    } POINT;
    // Globals
    float bbmaxx,*bbmaxy,*bbminx,*bbminy,**gridvx,*gridvy,maxx,maxy,minpop,
    minx,miny,polymaxx,polymaxy,polyminx,polyminy,*rho,**rho_0,**vx,**vy,*x,
    *xappr,xstepsize,**y,*yappr,ystepsize;
    int lx,ly,maxid,nblurs=0,npoly,npolycorn,*npolyinreg,nregcorn,nregion,
    polygonid,**polyinreg,*regionid,*regionidinv,*within;
    POINT *polycorn,*regcorn;
    // Function prototypes
    int readline(char line[],FILE *infile);
    void countpoly(FILE *infile);
    void countcorn(FILE *infile);
    void readcorn(FILE *infile);
    void makeregion(void);
    void pspicture(FILE *outfile);
    void bboxes(void);
    void interior(void);
    double regionarea(int ncrns,POINT *polygon);
    void digdens(void);
    void four1(float data[],unsigned long nn,int isign);
    void realft(float data[],unsigned long n,int isign);
    void cosft(float z[],unsigned long n,int isign);
    void sinft(float z[],unsigned long n,int isign);
    void coscosft(float **y,int isign1,int isign2);
    void cossinft(float **y,int isign1,int isign2);
    void sincosft(float **y,int isign1,int isign2);
    float **dmatrix(long nrl,long nrh,long ncl,long nch);
    float *d3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh);
    void free_matrix(float **m,long nrl,long nrh,long ncl,long nch);
    void free_f3tensor(float *t,long nrl,long nrh,long ncl,long nch,long ndl,
    long ndh);
    void fourn(float data[],unsigned long nn[],int ndim,int isign);
    void rlft3(float *data,float **speq,unsigned long nn1,unsigned long nn2,
    unsigned long nn3,int isign);
    void gaussianblur(void);
    void initcond(void);
    void calcv(float t);
    float intpol(float **arr,float x,float y);
    BOOLEAN newt2(float h,float *xappr,float xguess,float *yappr,float yguess,
    int j,int k);
    BOOLEAN nonlinvoltra(void);
    POINT transf(POINT p);
    void cartogram(void);
    // Function to read one line.
    int readline(char line[],FILE *infile)
    if (fgets(line,LINELENGTH,infile)==NULL) return 1;
    return 0;
    // Function to count the number of polygons.
    void countpoly(FILE *infile)
    char line[LINELENGTH];
    npoly = 0;
    while (!readline(line,infile)) if (line[0] == 'E') npoly++;
    npoly--; // The .gen file ends with two consecutive "END"s.
    // Function to count polygon corners. Also determines minimum/maximum x-/y-
    // coordinate.
    void countcorn(FILE *infile)
    BOOLEAN bnd_ok = FALSE;
    char line[LINELENGTH];
    float x,y;
    int polyctr=0,ratiolog;
    npolycorn = (int*)calloc(npoly,sizeof(int));
    polycorn = (POINT*)malloc(npoly*sizeof(POINT));
    readline(line,infile); // Skip first line.
    readline(line,infile);
    sscanf(line,"%f %f",&x,&y);
    polyminx = x; polymaxx = x; polyminy = y; polymaxy = y;
    npolycorn[0] = 1;
    while (!readline(line,infile))
    if (line[0] != 'E')
    sscanf(line,"%f %f",&x,&y);
    if (x < polyminx) polyminx = x;
    if (x > polymaxx) polymaxx = x;
    if (y < polyminy) polyminy = y;
    if (y > polymaxy) polymaxy = y;
    npolycorn[polyctr]++;
    else
    readline(line,infile);
    polycorn[polyctr] = (POINT)malloc(npolycorn[polyctr]sizeof(POINT));
    polyctr++;
    if (ceil(log((polymaxx-polyminx)/(polymaxy-polyminy))/log(2))+
    floor(log((polymaxx-polyminx)/(polymaxy-polyminy))/log(2))>
    2*log((polymaxx-polyminx)/(polymaxy-polyminy))/log(2))
    ratiolog = (int)floor(log((polymaxx-polyminx)/(polymaxy-polyminy))/log(2));
    else
    ratiolog = (int)ceil(log((polymaxx-polyminx)/(polymaxy-polyminy))/log(2));
    lx = (int)pow(2,(int)(0.5*(ratiolog+MAXNSQLOG)));
    ly = (int)pow(2,(int)(0.5*(MAXNSQLOG-ratiolog)));
    if ((polymaxx-polyminx)/lx > (polymaxy-polyminy)/ly)
    maxx = 0.5((1PADDING)*polymaxx(1-PADDING)polyminx);
    minx = 0.5((1-PADDING)*polymaxx(1PADDING)polyminx);
    maxy = 0.5(polymaxypolyminy(maxx-minx)ly/lx);
    miny = 0.5(polymaxy+polyminy-(maxx-minx)ly/lx);
    else
    maxy = 0.5((1PADDING)*polymaxy(1-PADDING)polyminy);
    miny = 0.5((1-PADDING)*polymaxy(1PADDING)polyminy);
    maxx = 0.5(polymaxxpolyminx(maxy-miny)lx/ly);
    minx = 0.5(polymaxx+polyminx-(maxy-miny)lx/ly);
    // Uncomment the next lines for interactive choice of boundary conditions.
    /* printf("For the %i polygon(s) under consideration:\n",npoly);
    printf("minimum x = %f\tmaximum x = %f\n",polyminx,polymaxx);
    printf("minimum y = %f\tmaximum y = %f\n",polyminy,polymaxy);
    while (!bnd_ok)
    printf("Type in your choice of boundaries.\nminx = ");
    scanf("%f",&minx);
    printf("maxx = ");
    scanf("%f",&maxx);
    printf("miny = ");
    scanf("%f",&miny);
    printf("maxy = ");
    scanf("%f",&maxy);
    if (minx>polyminx || maxx<polymaxx || miny>polyminy || maxy<polymaxy)
    printf("Invalid choice, does not enclose the polygon(s).\n");
    else bnd_ok = TRUE;
    // Function to read polygon corners. The first and last vertex of each polygon
    // must be identical.
    void readcorn(FILE *infile)
    char line[LINELENGTH];
    float xcoord,ycoord;
    int i,id,polyctr=0;
    polygonid = (int)malloc(npolysizeof(int));
    xstepsize = (maxx-minx)/lx;
    ystepsize = (maxy-miny)/ly;
    if (fabs((xstepsize/ystepsize)-1)>1e-3)
    fprintf(stderr,"WARNING: Area elements are not square: %f : %f\n",
    xstepsize,ystepsize);
    readline(line,infile);
    sscanf(line,"%i",&id);
    polygonid[polyctr] = id;
    i = 0;
    while (!readline(line,infile))
    if (line[0] != 'E')
    sscanf(line,"%f %f",&xcoord,&ycoord);
    polycorn[polyctr].x = (xcoord-minx)/xstepsize;
    polycorn[polyctr][i++].y = (ycoord-miny)/ystepsize;
    else
    // Is first and last vertex the same?
    if (fabs(polycorn[polyctr][0].x-
    polycorn[polyctr][npolycorn[polyctr]-1].x)+
    fabs(polycorn[polyctr][0].y-
    polycorn[polyctr][npolycorn[polyctr]-1].y)>1e-12)
    fprintf(stderr,
    "ERROR: %i-th polygon does not close upon itself.\n",
    polyctr+1);
    fprintf(stderr,"Identifier %i, first point %f %f.\n",
    polygonid[polyctr],polycorn[polyctr][0].x*xstepsize+minx,
    polycorn[polyctr][0].y*ystepsize+miny);
    exit(1);
    readline(line,infile);
    sscanf(line,"%i",&id);
    i = 0;
    polyctr++;
    if (polyctr<npoly) polygonid[polyctr] = id;
    polyminx = (polyminx-minx)/xstepsize;
    polyminy = (polyminy-miny)/ystepsize;
    polymaxx = (polymaxx-minx)/xstepsize;
    polymaxy = (polymaxy-miny)/ystepsize;
    // Function to make regions from polygons.
    void makeregion(void)
    BOOLEAN repeat;
    int i,lastid,minid,polyctr,ptctr,regctr;
    // Count the number of regions.
    nregion = 0;
    maxid = minid = polygonid[0];
    for (polyctr=0; polyctr<npoly; polyctr++)
    if (polygonid[polyctr] == -99999) continue;
    if (polygonid[polyctr]>maxid || polygonid[polyctr]<minid) nregion++;
    else
    repeat = FALSE;
    for (i=0; i<polyctr; i++)
    if (polygonid[polyctr]==polygonid)
    repeat = TRUE;
    break;
    if (!repeat) nregion++;
    if (polygonid[polyctr]>maxid) maxid = polygonid[polyctr];
    if (polygonid[polyctr]<minid) minid = polygonid[polyctr];
    if (minid < 0)
    fprintf(stderr,
    "ERROR: Negative region identifier %i.\n",minid);
    exit(1);
    // Match region identifiers.
    regionid = (int)malloc(nregionsizeof(int));
    nregion = 0;
    maxid = minid = polygonid[0];
    for (polyctr=0; polyctr<npoly; polyctr++)
    if (polygonid[polyctr] == -99999) continue;
    if (polygonid[polyctr]>maxid || polygonid[polyctr]<minid)
    regionid[nregion++] = polygonid[polyctr];
    else
    repeat = FALSE;
    for (i=0; i<polyctr; i++)
    if (polygonid[polyctr]==polygonid)
    repeat = TRUE;
    break;
    if (!repeat) regionid[nregion++] = polygonid[polyctr];
    if (polygonid[polyctr]>maxid) maxid = polygonid[polyctr];
    if (polygonid[polyctr]<minid) minid = polygonid[polyctr];
    regionidinv = (int)malloc((maxid+1)sizeof(int));
    // Negative number for unused identifiers.
    for (i=0; i<=maxid; i++) regionidinv = -1;
    for (regctr=0; regctr<nregion; regctr++)
    regionidinv[regionid[regctr]] = regctr;
    // Which polygons contribute to which regions?
    npolyinreg = (int*)calloc(nregion,sizeof(int));
    polyinreg = (int*)malloc(nregion*sizeof(int));
    lastid = polygonid[0];
    for (polyctr=0; polyctr<npoly; polyctr++)
    if (polygonid[polyctr] != -99999)
    npolyinreg[regionidinv[polygonid[polyctr]]]++;
    lastid = polygonid[polyctr];
    else npolyinreg[regionidinv[lastid]]++;
    for (regctr=0; regctr<nregion; regctr++)
    polyinreg[regctr] = (int)malloc(npolyinreg[regctr]sizeof(int));
    for (regctr=0; regctr<nregion; regctr++) npolyinreg[regctr] = 0;
    lastid = polygonid[0];
    for (polyctr=0; polyctr<npoly; polyctr++)
    if (polygonid[polyctr] != -99999)
    polyinreg[regionidinv[polygonid[polyctr]]]
    [npolyinreg[regionidinv[polygonid[polyctr]]]++] = polyctr;
    lastid = polygonid[polyctr];
    else polyinreg[regionidinv[lastid]][npolyinreg[regionidinv[lastid]]++]
    = polyctr;
    // Make regions from polygons. Start and end each polygon at (0,0).
    nregcorn = (int*)calloc(nregion,sizeof(int));
    regcorn = (POINT*)malloc(nregion*sizeof(POINT));
    for (regctr=0; regctr<nregion; regctr++)
    for (i=0; i<npolyinreg[regctr]; i++)
    nregcorn[regctr] += npolycorn[polyinreg[regctr]]+1;
    nregcorn[regctr]++;
    for (regctr=0; regctr<nregion; regctr++)
    regcorn[regctr] = (POINT)malloc(nregcorn[regctr]sizeof(POINT));
    ptctr = 0;
    regcorn[regctr][ptctr].x = regcorn[regctr][ptctr++].y = 0.0;
    for (polyctr=0; polyctr<npolyinreg[regctr]; polyctr++)
    for (i=0; i<npolycorn[polyinreg[regctr][polyctr]]; i++)
    regcorn[regctr][ptctr++] = polycorn[polyinreg[regctr][polyctr]];
    regcorn[regctr][ptctr].x = regcorn[regctr][ptctr++].y = 0.0;
    // Function to prepare a map in postscript standard letter format.
    void pspicture(FILE *outfile)
    char line[LINELENGTH];
    float addx,addy,b,conv,g,r;
    int ptctr,regctr;
    if (11*lx > 8.5*ly)
    conv = (float)8.5*72/lx;
    addx = 0;
    addy = 1136-8.5*36ly/lx;
    else
    conv = (float)11*72/ly;
    addx = 8.536-11*36lx/ly;
    addy = 0;
    fprintf(outfile,"0.5 setlinewidth\n");
    for (regctr=0; regctr<nregion; regctr++)
    fprintf(outfile,"newpath\n");
    fprintf(outfile,"%f %f moveto\n",
    regcorn[regctr][1].x*conv+addx,
    regcorn[regctr][1].y*conv+addy);
    for (ptctr=2; ptctr<nregcorn[regctr]; ptctr++)
    if (fabs(regcorn[regctr][ptctr].x)+
    fabs(regcorn[regctr][ptctr].y)>1e-12)
    fprintf(outfile,"%f %f lineto\n",
    regcorn[regctr][ptctr].x*conv+addx,
    regcorn[regctr][ptctr].y*conv+addy);
    else
    fprintf(outfile,"closepath\n");
    if (ptctr<nregcorn[regctr]-1)
    ptctr++;
    fprintf(outfile,"%f %f moveto\n",
    regcorn[regctr][ptctr].x*conv+addx,
    regcorn[regctr][ptctr].y*conv+addy);
    // Determine colors for map (without better knowledge I will do it
    // arbitrarily).
    if (regctr%3 == 0)
    r = (float)regctr/nregion;
    g = 1-(float)regctr/nregion;
    b = fabs(1-2*(float)regctr/nregion);
    else if (regctr%3 == 1)
    b = (float)regctr/nregion;
    r = 1-(float)regctr/nregion;
    g = fabs(1-2*(float)regctr/nregion);
    else
    g = (float)regctr/nregion;
    b = 1-(float)regctr/nregion;
    r = fabs(1-2*(float)regctr/nregion);
    fprintf(outfile,"%f %f %f setrgbcolor\ngsave\nfill\n",r,g,b);
    fprintf(outfile,"grestore\n0 setgray stroke\n");
    fprintf(outfile,"showpage\n");
    // Function to find the bounding box for each polygon.
    void bboxes(void)
    int i,j;
    float maxx, minx, maxy, miny;
    bbmaxx = (float)malloc(npolysizeof(float));
    bbmaxy = (float)malloc(npolysizeof(float));
    bbminx = (float)malloc(npolysizeof(float));
    bbminy = (float)malloc(npolysizeof(float));
    for (i = 0; i < npoly; i++)
    maxx = polycorn[0].x;
    maxy = polycorn[0].y;
    minx = maxx;
    miny = maxy;
    for (j = 0; j < npolycorn; j++)
    if (polycorn[j].x > maxx) maxx = polycorn[j].x;
    if (polycorn[j].x < minx) minx = polycorn[j].x;
    if (polycorn[j].y < miny) miny = polycorn[j].y;
    if (polycorn[j].y > maxy) maxy = polycorn[j].y;
    bbmaxx=maxx;
    bbmaxy=maxy;
    bbminx=minx;
    bbminy=miny;
    void interior(void)
    int i,inhowmanyregions,inregion[2],j,k,l,m,n,regctr;
    // Initialize within[][]. -1 means outside all regions.
    for (i=0; i<=lx; i++) for (j=0; j<=ly; j++) within[j] = -1;
    // Fill within[][].
    for (i=0; i<nregion; i++) for (j=0; j<npolyinreg; j++)
    for (k=0, n=npolycorn[polyinreg[j]]-1;
    k<npolycorn[polyinreg[j]]; n=k++)
    for (l=(int)ceil(MIN(polycorn[polyinreg[j]][k-1].y,
    polycorn[polyinreg[j]][k].y));
    l<MAX(polycorn[polyinreg[j]][k-1].y,
    polycorn[polyinreg[j]][k].y); l++)
    for (m=(int)floor(bbminx[polyinreg[j]]);
    m<(polycorn[polyinreg[j]][n].x-
    polycorn[polyinreg[j]][k].x)*
    (l-polycorn[polyinreg[j]][k].y)/
    (polycorn[polyinreg[j]][n].y-
    polycorn[polyinreg[j]][k].y)+
    polycorn[polyinreg[j]][k].x;
    m++)
    within[m][l] = i-within[m][l]-1;
    // Function to determine polygon area. This is needed to determine the average
    // population.
    // The problem in short is to find the area of a polygon whose vertices are
    // given. Recall Stokes' theorem in 3d for a vector field v:
    // integral[around closed curve dA]v(x,y,z).ds =
    // integral[over area A]curl(v).dA.
    // Now let v(x,y,z) = (0,Q(x,y),0) and dA = (0,0,dx*dy). Then
    // integral[around closed curve dA]Q(x,y)dy = integral[over area A]dQ/dxdxdy.
    // If Q = x:
    // A = integral[over area A]dx*dy = integral[around closed curve dA]x dy.
    // For every edge from (x,y) to (x[i1],y[i1]) there is a
    // parametrization
    // (x(t),y(t)) = ((1-t)xtx[i+1],(1-t)y+ty[i1]), 0<t<1
    // so that the path integral along this edge is
    // int[from 0 to 1]{(1-t)xt*x[i+1]}(y[i1]-y)dt =
    // 0.5(y[i1]-y)(x+x[i1]).
    // Summing over all edges yields:
    // Area = 0.5*[(x[0]+x[1])(y[1]-y[0]) + (x[1]+x[2])(y[2]-y[1]) + ...
    // ...(x[n-1]+x[n])(y[n]-y[n-1])+(x[n]x[0])(y[0]-y[n])]
    // ArcGIS treats a clockwise direction as positive, so there is a minus sign.
    double regionarea(int ncrns,POINT *polygon)
    double area=0;
    int i;
    for (i=0; i<ncrns-1; i++)
    area -=
    0.5(polygon.xpolygon[i+1].x)(polygon[i1].y-polygon.y);
    return area -= 0.5(polygon[ncrns-1].x+polygon[0].x)
    (polygon[0].y-polygon[ncrns-1].y);
    // Function to digitize density.
    void digdens(void)
    char line[LINELENGTH];
    double area,avgdens,*cases,dens,minpop=INFTY,ncases,totarea=0.0,totpop=0.0;
    FILE* infile;
    int i,id,ii,inhowmanyregions,inregion[2],j,jj,regctr;
    if ((infile=fopen(CENSUSFILE))==NULL)
    fprintf(stderr,"ERROR: Cannot find CENSUSFILE.\n");
    exit(1);
    // Find the minimum positive number of cases.
    while (!readline(line,infile))
    sscanf(line,"%i %lf",&id,&ncases);
    if (ncases<minpop && ncases>1e-12) minpop = ncases;
    fclose(infile);
    // Store the number of cases in an array.
    cases = (double)malloc(nregionsizeof(double));
    for (i=0; i<nregion; i++) cases = -1.0;
    infile = fopen(CENSUSFILE);
    while (!readline(line,infile))
    sscanf(line,"%i %lf",&id,&ncases);
    if (id>maxid || regionidinv[id]<0)
    fprintf(stderr,"ERROR: Identifier %i in CENSUSFILE does not\n",id);
    fprintf(stderr,"match any identifier in generate file.\n");
    exit(1);
    if (ncases>1e-12) totpop += (cases[regionidinv[id]] = ncases);
    else totpop += (cases[regionidinv[id]] = MINPOPFAC*minpop);
    for (regctr=0; regctr<nregion; regctr++) if (cases[regctr] < 0.0)
    fprintf(stderr,"ERROR: No density for region %i?\n",regionid[regctr]);
    fprintf(stderr,"cases = %f\n",cases[regctr]);
    exit(1);
    fclose(infile);
    // Calculate regions' areas, total area to be mapped, regional and average
    // densities.
    area = (double)malloc(nregionsizeof(double));
    for (regctr=0; regctr<nregion; regctr++)
    totarea += (area[regctr] = regionarea(nregcorn[regctr],regcorn[regctr]));
    dens = (double)malloc(nregionsizeof(double));
    for (regctr=0; regctr<nregion; regctr++)
    dens[regctr] = cases[regctr]/area[regctr];
    avgdens = totpop/totarea;
    // Digitize density.
    for (i=0; i<=lx; i++) for (j=0; j<=ly; j++) rho_0[j] = 0; // Initialize.
    printf("digitizing density ...\n");
    for (i=0; i<lx; i++) for (j=0; j<ly; j++)
    if (within[j]==-1) rho_0[j] = avgdens;
    else rho_0[j] = dens[within[j]];
    // Fill the edges correctly.
    rho_0[0][0] += rho_0[0][ly] + rho_0[lx][0] + rho_0[lx][ly];
    for (i=1; i<lx; i++) rho_0[0] += rho_0[ly];
    for (j=1; j<ly; j++) rho_0[0][j] += rho_0[lx][j];
    for (i=0; i<lx; i++) rho_0[ly] = rho_0[0];
    for (j=0; j<=ly; j++) rho_0[lx][j] = rho_0[0][j];
    // Replace rho_0 by Fourier transform
    coscosft(rho_0,1,1);
    free(area);
    free(cases);
    for (i=0; i<npoly; i++) free(polycorn);
    free(polycorn);
    for (i=0; i<nregion; i++) free(regcorn);
    free(regcorn);
    free(dens);
    free(npolycorn);
    free(nregcorn);
    free(polygonid);
    free(regionid);
    free(regionidinv);
    free(bbmaxx);
    free(bbmaxy);
    free(bbminx);
    free(bbminy);
    for (i=0; i<nregion; i++) free(polyinreg);
    free(polyinreg);
    free(npolyinreg);
    // Function to replace data[1...2*nn] by its discrete Fourier transform, if
    // isign is input as 1; or replaces data[1...2*nn] by nn times its inverse
    // discrete Fourier transform, if isign is input as -1. data is a complex array
    // of length nn or, equivalently, a real array of length 2*nn. nn MUST be an
    // integer power of 2 (this is not checked for!).
    // From "Numerical Recipes in C".
    void four1(float data[],unsigned long nn,int isign)
    double theta,wi,wpi,wpr,wr,wtemp;
    float tempi,tempr;
    unsigned long i,istep,j,m,mmax,n;
    n=nn<<1;
    j=1;
    for (i=1; i<n; i+=2)
    if (j>i)
    // This is the bit-reversal section of the routine.
    SWAP(data[j],data);
    SWAP(data[j1],data[i1]); // Exchange the two complex numbers.
    m=n>>1;
    while (m>=2 && j>m)
    j -= m;
    m>>=1;
    j += m;
    // Here begins the Danielson-Lanczos section of the routine.
    mmax=2;
    while (n>mmax) // Outer loop executed log_2 nn times.
    istep = mmax<<1;
    // Initialize the trigonometric recurrence.
    theta = isign*(6.28318530717959/mmax);
    wtemp = sin(0.5*theta);
    wpr = -2.0wtempwtemp;
    wpi = sin(theta);
    wr = 1.0;
    wi = 0.0;
    for (m=1; m<mmax; m+=2) // Here are the two nested inner loops.
    for (i=m; i<=n; i+=istep)
    j=i+mmax; // This is the Danielson-Lanczos formula
    tempr=wrdata[j]-widata[j+1];
    tempi=wrdata[j1]widata[j];
    data[j]=data-tempr;
    data[j1]=data[i1]-tempi;
    data += tempr;
    data[i+1] += tempi;
    wr = (wtemp=wr)wpr-wiwpi+wr; // Trigonometric recurrence.
    wi = wiwprwtempwpiwi;
    mmax=istep;
    // Function to calculate the Fourier Transform of a set of n real-valued data
    // points. It replaces this data (which is stored in array data[1...n]) by the
    // positive frequency half of its complex Fourier Transform. The real-valued
    // first and last components of the complex transform are returned as elements
    // data[1] and data[2] respectively. n must be a power of 2. This routine also
    // calculates the inverse transform of a complex data array if it is the
    // transform of real data. (Result in this case must be multiplied by 2/n).
    // From "Numerical Recipes in C".
    void realft(float data[],unsigned long n,int isign)
    double theta,wi,wpi,wpr,wr,wtemp;
    float c1=0.5,c2,h1i,h1r,h2i,h2r;
    unsigned long i,i1,i2,i3,i4,np3;
    theta = 3.141592653589793/(double) (n>>1); // Initialize the recurrence
    if (isign == 1)
    c2 = -0.5;
    four1(data,n>>1,1); // The forward transform is here.
    else // Otherwise set up for an inverse transform.
    c2 = 0.5;
    theta = -theta;
    wtemp = sin(0.5*theta);
    wpr = -2.0wtempwtemp;
    wpi = sin(theta);
    wr = 1.0+wpr;
    wi = wpi;
    np3 = n+3;
    for (i=2; i<=(n>>2); i++) // Case i=1 done separately below.
    i4 = 1(i3=np3-(i2=1+(i1=ii-1)));
    // The two separate transforms are separated out of data.
    h1r = c1*(data[i1]+data[i3]);
    h1i = c1*(data[i2]-data[i4]);
    h2r = -c2*(data[i2]+data[i4]);
    h2i = c2*(data[i1]-data[i3]);
    // Here they are recombined to form the true transform of the original
    // data.
    data[i1] = h1r+wrh2r-wih2i;
    data[i2] = h1iwrh2iwih2r;
    data[i3] = h1r-wrh2r+wih2i;
    data[i4] = -h1iwrh2iwih2r;
    wr = (wtemp=wr)wpr-wiwpi+wr; // The recurrence.
    wi = wiwprwtempwpiwi;
    if (isign == 1)
    data[1] = (h1r=data[1])+data[2]; // Squeeze the first and last data
    // together to get them all within the original array.
    data[2] = h1r-data[2];
    else
    data[1] = c1*((h1r=data[1])+data[2]);
    data[2] = c1*(h1r-data[2]);
    // This is the inverse transform for the case isign = -1.
    four1(data,n>>1,-1);
    // Function to calculate the cosine transform of a set z[0...n] of real-valued
    // data points. The transformed data replace the original data in array z. n
    // must be a power of 2. For forward transform set isign=1, for back transform
    // isign = -1. (Note: The factor 2/n has been taken care of.)
    // From "Numerical Recipes in C".
    void cosft(float z[],unsigned long n,int isign)
    double theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;
    float *a,sum,y1,y2;
    int j,n2;
    // Numerical Recipes starts counting at 1 which is rather confusing. I will
    // count from 0.
    a = (float)malloc((n+2)sizeof(float));
    for (j=1; j<=n+1; j++) a[j] = z[j-1];
    // Here is the Numerical Recipes code.
    theta=PI/n; //Initialize the recurrence.
    wtemp = sin(0.5*theta);
    wpr = -2.0wtempwtemp;
    wpi = sin(theta);
    sum = 0.5*(a[1]-a[n+1]);
    a[1] = 0.5*(a[1]a[n1]);
    n2 = n+2;
    for (j=2; j<=(n>>1); j++)
    wr = (wtemp=wr)wpr-wiwpi+wr;
    wi = wiwprwtempwpiwi;
    y1 = 0.5*(a[j]+a[n2-j]);
    y2 = (a[j]-a[n2-j]);
    a[j] = y1-wi*y2;
    a[n2-j] = y1+wi*y2;
    sum += wr*y2;
    realft(a,n,1);
    a[n+1] = a[2];
    a[2] = sum;
    for (j=4; j<=n; j+=2)
    sum += a[j];
    a[j] = sum;
    // Finally I revert to my counting method.
    if (isign == 1) for (j=1; j<=n+1; j++) z[j-1] = a[j];
    else if (isign == -1) for (j=1; j<=n+1; j++) z[j-1] = 2.0*a[j]/n;
    free(a);
    // Function to calculate the sine transform of a set of n real-valued data
    // points stored in array z[0..n]. The number n must be a power of 2. On exit
    // z is replaced by its transform. For forward transform set isign=1, for back
    // transform isign = -1.
    void sinft(float z[],unsigned long n,int isign)
    double theta,wi=0.0,wpi,wpr,wr=1.0,wtemp;
    float *a,sum,y1,y2;
    int j;
    unsigned long n2=n+2;
    // See my comment about Numerical Recipe's counting above. Note that the last
    // component plays a completely passive role and does not need to be stored.
    a = (float*) malloc((n+1)*sizeof(float));
    for (j=1; j<=n; j++) a[j] = z[j-1];
    // Here is the Numerical Recipes code.
    theta = PI/(double)n; // Initialize the recurrence.
    wtemp = sin(0.5*theta);
    wpr = -2.0wtempwtemp;
    wpi = sin(theta);
    a[1] = 0.0;
    for (j=2; j<=(n>>1)+1; j++)
    // Calculate the sine for the auxiliary array.
    wr = (wtemp=wr)wpr-wiwpi+wr;
    // The cosine is needed to continue the recurrence.
    wi = wiwprwtempwpiwi;
    // Construct the auxiliary array.
    y1 = wi*(a[j]+a[n2-j]);
    y2 = 0.5*(a[j]-a[n2-j]);
    // Terms j and N-j are related.
    a[j] = y1+y2;
    a[n2-j] = y1-y2;
    // Transform the auxiliary array.
    realft(a,n,1);
    // Initialize the sum used for odd terms below.
    a[1] *= 0.5;
    sum = a[2] = 0.0;
    // Even terms determined directly. Odd terms determined by running sum.
    for (j=1; j<=n-1; j+=2)
    sum += a[j];
    a[j] = a[j+1];
    a[j+1] = sum;
    // Change the indices.
    if (isign == 1) for (j=1; j<=n; j++) z[j-1] = a[j];
    else if (isign == -1) for (j=1; j<=n; j++) z[j-1] = 2.0*a[j]/n;
    z[n] = 0.0;
    free(a);
    // Function to calculate a two-dimensional cosine Fourier transform. Forward/
    // backward transform in x: isign1 = +/-1, in y: isign2 = +/-1.
    void coscosft(float **y,int isign1,int isign2)
    float temp[lx+1];
    unsigned long i,j;
    for (i=0; i<=lx; i++)
    cosft(y,ly,isign2);
    for (j=0; j<=ly; j++)
    for (i=0; i<=lx; i++) temp=y[j];
    cosft(temp,lx,isign1);
    for (i=0; i<=lx; i++) y[j]=temp;
    // Function to calculate a cosine Fourier transform in x and a sine transform
    // in y. Forward/backward transform in x: isign1 = +/-1, in y: isign2 = +/-1.
    void cossinft(float **y,int isign1,int isign2)
    float temp[lx+1];
    unsigned long i,j;
    for (i=0; i<=lx; i++)
    sinft(y,ly,isign2);
    for (j=0; j<=ly; j++)
    for (i=0; i<=lx; i++) temp=y[j];
    cosft(temp,lx,isign1);
    for (i=0; i<=lx; i++) y[j]=temp;
    // Function to calculate a sine Fourier transform in x and a cosine transform
    // in y. Forward/backward transform in x: isign1 = +/-1, in y: isign2 = +/-1.
    void sincosft(float **y,int isign1,int isign2)
    float temp[lx+1];
    unsigned long i,j;
    for (i=0; i<=lx; i++)
    cosft(y,ly,isign2);
    for (j=0; j<=ly; j++)
    for (i=0; i<=lx; i++) temp=y[j];
    sinft(temp,lx,isign1);
    for (i=0; i<=lx; i++) y[j]=temp;
    // Function to allocate a float matrix with subscript range
    // m[nrl..nrh][ncl..nch]. From "Numerical Recipes in C".
    float **dmatrix(long nrl,long nrh,long ncl,long nch)
    long i, nrow=nrh-nrl1,ncol=nch-ncl1;
    float **m;
    /* allocate pointers to rows */
    m=(float **) malloc((unsigned int)((nrow+NR_END)sizeof(float)));
    if (!m)
    fprintf(stderr,"allocation failure 1 in matrix()\n");
    exit(1);
    m += NR_END;
    m -= nrl;
    /* allocate rows and set pointers to them */
    m[nrl]=(float *) malloc((unsigned int)((nrowncol+NR_END)sizeof(float)));
    if (!m[nrl])
    fprintf(stderr,"allocation failure 2 in matrix()\n");
    exit(1);
    m[nrl] += NR_END;
    m[nrl] -= ncl;
    for(i=nrl1;i<=nrh;i+) m=m[i-1]+ncol;
    /* return pointer to array of pointers to rows */
    return m;
    // Function to allocate a float 3tensor with range
    // t[nrl..nrh][ncl..nch][ndl..ndh]. From "Numerical Recipes in C".
    float *d3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
    long i,j,nrow=nrh-nrl1,ncol=nch-ncl+1,ndep=ndh-ndl1;
    float *t;
    /* allocate pointers to pointers to rows */
    t=(float *) malloc((sizet)((nrow+NREND)sizeof(float*)));
    if (!t)
    fprintf(stderr,"allocation failure 1 in f3tensor()\n");
    exit(1);
    t += NR_END;
    t -= nrl;
    /* allocate pointers to rows and set pointers to them */
    t[nrl]=(float **) malloc((sizet)((nrowncol+NREND)*sizeof(float)));
    if (!t[nrl])
    fprintf(stderr,"allocation failure 2 in f3tensor()\n");
    exit(1);
    t[nrl] += NR_END;
    t[nrl] -= ncl;
    /* allocate rows and set pointers to them */
    t[nrl][ncl]=(float *) malloc((sizet)((nrowncol*ndep+NREND)sizeof(float)));
    if (!t[nrl][ncl])
    fprintf(stderr,"allocation failure 3 in f3tensor()\n");
    exit(1);
    t[nrl][ncl] += NR_END;
    t[nrl][ncl] -= ndl;
    for(j=ncl1;j<=nch;j+) t[nrl][j]=t[nrl][j-1]+ndep;
    for(i=nrl1;i<=nrh;i+) {
    t=t[i-1]+ncol;
    t[ncl]=t[i-1][ncl]+ncol*ndep;
    for(j=ncl1;j<=nch;j+) t[j]=t[j-1]+ndep;
    /* return pointer to array of pointers to rows */
    return t;
    void free_matrix(float **m,long nrl,long nrh,long ncl,long nch)
    free((char*) (m[nrl]+ncl-1));
    free((char*) (m+nrl-1));
    void free_f3tensor(float *t,long nrl,long nrh,long ncl,long nch,long ndl,
    long ndh)
    free((char*) (t[nrl][ncl]+ndl-1));
    free((char*) (t[nrl]+ncl-1));
    free((char*) (t+nrl-1));
    // Function to replace data by its ndim-dimensional discrete Fourier transform,
    // if isign is input as 1. nn[1..ndim] is an integer array containing the
    // lengths of each dimension (number of complex values), which MUST be all
    // powers of 2. data is a real array of length twice the product of these
    // lengths, in which the data are stored as in a multidimensional complex
    // array: real and imaginary parts of each element are in consecutive
    // locations, and the rightmost index of the array increases most rapidly as
    // one proceeds along data. For a two-dimensional array, this is equivalent to
    // storing the arrays by rows. If isign is input as -1, data is replaced by its
    // inverse transform times the product of the lengths of all dimensions.
    void fourn(float data[],unsigned long nn[],int ndim,int isign)
    int idim;
    unsigned long i1,i2,i3,i2rev,i3rev,ip1,ip2,ip3,ifp1,ifp2;
    unsigned long ibit,k1,k2,n,nprev,nrem,ntot;
    double tempi,tempr;
    float theta,wi,wpi,wpr,wr,wtemp;
    for (ntot=1, idim=1; idim<=ndim; idim++)
    ntot *= nn[idim];
    nprev = 1;
    for (idim=ndim; idim>=1; idim--)
    n = nn[idim];
    nrem = ntot/(n*nprev);
    ip1=nprev << 1;
    ip2 = ip1*n;
    ip3 = ip2*nrem;
    i2rev = 1;
    for (i2=1; i2<=ip2; i2+=ip1)
    if (i2 < i2rev)
    for (i1=i2; i1<=i2+ip1-2; i1+=2)
    for (i3=i1; i3<=ip3; i3+=ip2)
    i3rev = i2rev+i3-i2;
    SWAP(data[i3],data[i3rev]);
    SWAP(data[i31],data[i3rev1]);
    ibit = ip2>>1;
    while (ibit>=ip1 && i2rev>ibit)
    i2rev -= ibit;
    ibit >>= 1;
    i2rev += ibit;
    ifp1 = ip1;
    while (ifp1 < ip2)
    ifp2 = ifp1 << 1;
    theta = 2isignPI/(ifp2/ip1);
    wtemp = sin(0.5*theta);
    wpr = -2.0wtempwtemp;
    wpi = sin(theta);
    wr = 1.0;
    wi = 0.0;
    for (i3=1; i3<=ifp1; i3+=ip1)
    for (i1=i3; i1<=i3+ip1-2; i1+=2)
    for (i2=i1; i2<=ip3; i2+=ifp2)
    k1 = i2;
    k2 = k1+ifp1;
    tempr = (float)wrdata[k2]-(float)widata[k2+1];
    tempi = (float)wrdata[k21](float)widata[k2];
    data[k2] = data[k1]-tempr;
    data[k2+1] = data[k1+1]-tempi;
    data[k1] += tempr;
    data[k1+1] += tempi;
    wr = (wtemp=wr)wpr-wiwpi+wr;
    wi = wiwprwtempwpiwi;
    ifp1 = ifp2;
    nprev *= n;
    // Function to calculate a three-dimensional Fourier transform of
    // data[1..nn1][1..nn2][1..nn3] (where nn1=1 for the case of a logically two-
    // dimensional array). This routine returns (for isign=1) the complex fast
    // Fourier transform as two complex arrays: On output, data contains the zero
    // and positive frequency values of the third frequency component, while
    // speq[1..nn1][1..2*nn2] contains the Nyquist critical frequency values of the
    // third frequency component. First (and second) frequency components are
    // stored for zero, positive, and negative frequencies, in standard wrap-around
    // order. See Numerical Recipes for description of how complex values are
    // arranged. For isign=-1, the inverse transform (times nn1nn2nn3/2 as a
    // constant multiplicative factor) is performed, with output data (viewed as
    // real array) deriving from input data (viewed as complex) and speq. For
    // inverse transforms on data not generated first by a forward transform, make
    // sure the complex input data array satisfies property 12.5.2 from NR. The
    // dimensions nn1, nn2, nn3 must always be integer powers of 2.
    void rlft3(float *data,float **speq,unsigned long nn1,unsigned long nn2,
    unsigned long nn3,int isign)
    double theta,wi,wpi,wpr,wr,wtemp;
    float c1,c2,h1r,h1i,h2r,h2i;
    unsigned long i1,i2,i3,j1,j2,j3,nn[4],ii3;
    if (1+&data[nn1][nn2][nn3]-&data[1][1][1] != nn1nn2nn3)
    fprintf(stderr,
    "rlft3: problem with dimensions or contiguity of data array\n");
    exit(1);
    c1 = 0.5;
    c2 = -0.5*isign;
    theta = 2isign(PI/nn3);
    wtemp = sin(0.5*theta);
    wpr = -2.0wtempwtemp;
    wpi = sin(theta);
    nn[1] = nn1;
    nn[2] = nn2;
    nn[3] = nn3 >> 1;
    // Case of forward transform. Here is where most all of the compute time is
    // spent. Extend data periodically into speq.
    if (isign == 1)
    fourn(&data[1][1][1]-1,nn,3,isign);
    for (i1=1; i1<=nn1; i1++)
    for (i2=1, j2=0; i2<=nn2; i2++)
    speq[i1][++j2] = data[i1][i2][1];
    speq[i1][++j2] = data[i1][i2][2];
    for (i1=1; i1<=nn1; i1++)
    // Zero frequency is its own reflection; otherwise locate corresponding
    // negative frequency in wrap-around order.
    j1 = (i1 != 1 ? nn1-i1+2 : 1);
    // Initialize trigonometric recurrence.
    wr = 1.0;
    wi = 0.0;
    for (ii3=1, i3=1; i3<=(nn3>>2)+1; i3+,ii3=2)
    for (i2=1; i2<=nn2; i2++)
    if (i3 == 1)
    j2 = (i2 != 1 ? ((nn2-i2)<<1)+3 : 1);
    h1r = c1*(data[i1][i2][1]+speq[j1][j2]);
    h1i = c1*(data[i1][i2][2]-speq[j1][j2+1]);
    h2i = c2*(data[i1][i2][1]-speq[j1][j2]);
    h2r = -c2*(data[i1][i2][2]speq[j1][j21]);
    data[i1][i2][1] = h1r+h2r;
    data[i1][i2][2] = h1i+h2i;
    speq[j1][j2] = h1r-h2r;
    speq[j1][j2+1] = h2i-h1i;
    else
    j2 = (i2 != 1 ? nn2-i2+2 : 1);
    j3 = nn3+3-(i3<<1);
    h1r = c1*(data[i1][i2][ii3]+data[j1][j2][j3]);
    h1i = c1*(data[i1][i2][ii31]-data[j1][j2][j31]);
    h2i = c2*(data[i1][i2][ii3]-data[j1][j2][j3]);
    h2r = -c2*(data[i1][i2][ii31]+data[j1][j2][j31]);
    data[i1][i2][ii3] = h1r+wrh2r-wih2i;
    data[i1][i2][ii3+1] = h1iwrh2iwih2r;
    data[j1][j2][j3] = h1r-wrh2r+wih2i;
    data[j1][j2][j3+1] = -h1iwrh2iwih2r;
    // Do the recurrence.
    wr = (wtemp=wr)wpr-wiwpi+wr;
    wi = wiwprwtempwpiwi;
    // Case of reverse transform.
    if (isign == -1)
    fourn(&data[1][1][1]-1,nn,3,isign);
    // Function to perform Gaussian blur.
    void gaussianblur(void)
    float **blur,***conv,***pop,**speqblur,**speqconv,*speqpop;
    int i,j,p,q;
    blur = d3tensor(1,1,1,lx,1,ly);
    conv = d3tensor(1,1,1,lx,1,ly);
    pop = d3tensor(1,1,1,lx,1,ly);
    speqblur = dmatrix(1,1,1,2*lx);
    speqconv = dmatrix(1,1,1,2*lx);
    speqpop = dmatrix(1,1,1,2*lx);
    // Fill population and convolution matrix.
    for (i=1; i<=lx; i++) for (j=1; j<=ly; j++)
    if (i > lx/2) p = i-1-lx;
    else p = i-1;
    if (j > ly/2) q = j-1-ly;
    else q = j-1;
    pop[1][j] = rho_0[i-1][j-1];
    conv[1][j] = 0.5*
    (erf((p+0.5)/(sqrt(2.0)(SIGMApow(SIGMAFAC,nblurs))))-
    erf((p-0.5)/(sqrt(2.0)(SIGMA*pow(SIGMAFAC,nblurs)))))
    (erf((q+0.5)/(sqrt(2.0)(SIGMApow(SIGMAFAC,nblurs))))-
    erf((q-0.5)/(sqrt(2.0)(SIGMA*pow(SIGMAFAC,nblurs)))))/(lxly);
    // Fourier transform.
    rlft3(pop,speqpop,1,lx,ly,1);
    rlft3(conv,speqconv,1,lx,ly,1);
    // Multiply pointwise.
    for (i=1; i<=lx; i++)
    for (j=1; j<=ly/2; j++)
    blur[1][2*j-1] =
    pop[1][2j-1]*conv[1][2j-1]-
    pop[1][2j]*conv[1][2j];
    blur[1][2*j] =
    pop[1][2j]*conv[1][2j-1]+
    pop[1][2j-1]*conv[1][2j];
    for (i=1; i<=lx; i++)
    speqblur[1][2*i-1] =
    speqpop[1][2i-1]*speqconv[1][2i-1]-
    speqpop[1][2i]*speqconv[1][2i];
    speqblur[1][2*i] =
    speqpop[1][2i]*speqconv[1][2i-1]+
    speqpop[1][2i-1]*speqconv[1][2i];
    // Backtransform.
    rlft3(blur,speqblur,1,lx,ly,-1);
    // Write to rho_0.
    for (i=1; i<=lx; i++) for (j=1; j<=ly; j++) rho_0[i-1][j-1] = blur[1][j];
    free_f3tensor(blur,1,1,1,lx,1,ly);
    free_f3tensor(conv,1,1,1,lx,1,ly);
    free_f3tensor(pop,1,1,1,lx,1,ly);
    free_matrix(speqblur,1,1,1,2*lx);
    free_matrix(speqconv,1,1,1,2*lx);
    free_matrix(speqpop,1,1,1,2*lx);
    // Function to initialize rho_0. The original density is blurred with width
    // SIGMA*pow(SIGMAFAC,nblurs).
    void initcond(void)
    float maxpop;
    int i,j;
    // Reconstruct population density.
    coscosft(rho_0,-1,-1);
    // There must not be negative densities.
    for (i=0; i<lx; i++) for (j=0; j<ly; j++) if (rho_0[j]<-1e10)
    fprintf(stderr,"ERROR: Negative density in DENSITYFILE.\n");
    exit(1);
    // Perform Gaussian blur.
    printf("Gaussian blur ...\n");
    gaussianblur();
    // Find the mimimum density. If it is very small suggest an increase in
    // SIGMA.
    minpop = rho_0[0][0];
    maxpop = rho_0[0][0];
    for (i=0; i<lx; i++) for (j=0; j<ly; j++) if (rho_0[j]<minpop)
    minpop = rho_0[j];
    for (i=0; i<lx; i++) for (j=0; j<ly; j++) if (rho_0[j]>maxpop)
    maxpop = rho_0[j];
    if (0<minpop && minpop<1e-8*maxpop)
    fprintf(stderr,"Minimimum population very small (%f). Integrator\n",
    minpop);
    fprintf(stderr,
    "will probably converge very slowly. You can speed up the\n");
    fprintf(stderr,"process by increasing SIGMA to a value > %f.\n",
    SIGMA*pow(SIGMAFAC,nblurs));
    // Replace rho_0 by cosine Fourier transform in both variables.
    coscosft(rho_0,1,1);
    // Function to calculate the velocity field
    void calcv(float t)
    int j,k;
    // Fill rho with Fourier coefficients.
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    rho[j][k] = exp(-((PIj/lx)*(PI*j/lx)+(PI*k/ly)*(PI*k/ly))*t)rho_0[j][k];
    // Calculate the Fourier coefficients for the partial derivative of rho.
    // Store temporary results in arrays gridvx, gridvy.
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    gridvx[j][k] = -(PIj/lx)rho[j][k];
    gridvy[j][k] = -(PIk/ly)rho[j][k];
    // Replace rho by cosine Fourier backtransform in both variables.
    coscosft(rho,-1,-1);
    // Replace vx by sine Fourier backtransform in the first and cosine Fourier
    // backtransform in the second variable.
    sincosft(gridvx,-1,-1);
    // Replace vy by cosine Fourier backtransform in the first and sine Fourier
    // backtransform in the second variable.
    cossinft(gridvy,-1,-1);
    // Calculate the velocity field.
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    gridvx[j][k] = -gridvx[j][k]/rho[j][k];
    gridvy[j][k] = -gridvy[j][k]/rho[j][k];
    // Function to bilinearly interpolate a two-dimensional array. For higher
    // accuracy one could consider higher order interpolation schemes.
    float intpol(float **arr,float x,float y)
    int gaussx,gaussy;
    float deltax,deltay;
    // Decompose x and y into an integer part and a decimal.
    gaussx = (int)x;
    gaussy = (int)y;
    deltax = x-gaussx;
    deltay = y-gaussy;
    // Interpolate.
    if (gaussx==lx && gaussy==ly)
    return arr[gaussx][gaussy];
    if (gaussx==lx)
    return (1-deltay)arr[gaussx][gaussy]deltayarr[gaussx][gaussy1];
    if (gaussy==ly)
    return (1-deltax)arr[gaussx][gaussy]deltaxarr[gaussx1][gaussy];
    return (1-deltax)(1-deltay)arr[gaussx][gaussy]+
    (1-deltax)deltayarr[gaussx][gaussy1]
    deltax(1-deltay)arr[gaussx1][gaussy]
    deltaxdeltayarr[gaussx1][gaussy1];
    // Function to find the root of the system of equations
    // xappr-0.5h*v_x(t+h,xappr,yappr)-x[j][k]-0.5*hvx[j][k]=0,
    // yappr-0.5h*v_y(t+h,xappr,yappr)-y[j][k]-0.5*hvy[j][k]=0
    // with Newton-Raphson. Returns TRUE after sufficient convergence.
    BOOLEAN newt2(float h,float *xappr,float xguess,float *yappr,float yguess,
    int j,int k)
    float deltax,deltay,dfxdx,dfxdy,dfydx,dfydy,fx,fy;
    int gaussx,gaussxplus,gaussy,gaussyplus,i;
    // Initial guess.
    *xappr = xguess;
    *yappr = yguess;
    for (i=1; i<=IMAX; i++)
    // fx, fy are the left-hand sides of the two equations. Find
    // v_x(t+h,xappr,yappr), v_y(t+h,xappr,yappr) by interpolation.
    fx = xappr-0.5*h*intpol(gridvx,*xappr,*yappr)-x[j][k]-0.5*hvx[j][k];
    fy = yappr-0.5*h*intpol(gridvy,*xappr,*yappr)-y[j][k]-0.5*hvy[j][k];
    // Linearly approximate the partial derivatives of fx, fy with a finite
    // difference method. More elaborate techniques are possible, but this
    // quick and dirty method appears to work reasonably for our purpose.
    gaussx = (int)(*xappr);
    gaussy = (int)(*yappr);
    if (gaussx == lx) gaussxplus = 0;
    else gaussxplus = gaussx+1;
    if (gaussy == ly) gaussyplus = 0;
    else gaussyplus = gaussy+1;
    deltax = x[j][k] - gaussx;
    deltay = y[j][k] - gaussy;
    dfxdx = 1 - 0.5h
    ((1-deltay)*(gridvx[gaussxplus][gaussy]-gridvx[gaussx][gaussy])+
    deltay*(gridvx[gaussxplus][gaussyplus]-gridvx[gaussx][gaussyplus]));
    dfxdy = -0.5h
    ((1-deltax)*(gridvx[gaussx][gaussyplus]-gridvx[gaussx][gaussy])+
    deltax*(gridvx[gaussxplus][gaussyplus]-gridvx[gaussxplus][gaussy]));
    dfydx = -0.5h
    ((1-deltay)*(gridvy[gaussxplus][gaussy]-gridvy[gaussx][gaussy])+
    deltay*(gridvy[gaussxplus][gaussyplus]-gridvy[gaussx][gaussyplus]));
    dfydy = 1 - 0.5h
    ((1-deltax)*(gridvy[gaussx][gaussyplus]-gridvy[gaussx][gaussy])+
    deltax*(gridvy[gaussxplus][gaussyplus]-gridvy[gaussxplus][gaussy]));
    // If the current approximation is (xappr,yappr) for the zero of
    // (fx(x,y),fy(x,y)) and J is the Jacobian, then we can approximate (in
    // vector notation) for |delta|<<1:
    // f((xappr,yappr)+delta) = f(xappr,yappr)+J*delta.
    // Setting f((xappr,yappr)+delta)=0 we obtain a set of linear equations
    // for the correction delta which moves f closer to zero, namely
    // J*delta = -f.
    // The improved approximation is then x = xappr+delta.
    // The process will be iterated until convergence is reached.
    if ((fx*fx + fy*fy) < TOLF) return TRUE;
    deltax = (fy*dfxdy - fxdfydy)/(dfxdxdfydy - dfxdy*dfydx);
    deltay = (fx*dfydx - fydfxdx)/(dfxdxdfydy - dfxdy*dfydx);
    if ((deltax*deltax + deltay*deltay) < TOLX) return TRUE;
    *xappr += deltax;
    *yappr += deltay;
    //printf("deltax %f, deltay %f\n",deltax,deltay);
    fprintf(stderr,"newt2 failed, increasing sigma to %f.\n",
    SIGMA*pow(SIGMAFAC,nblurs));
    return FALSE;
    // Function to integrate the nonlinear Volterra equation. Returns TRUE after
    // the displacement field converged, after MAXINTSTEPS integration steps, or
    // if the time exceeds TIMELIMIT.
    BOOLEAN nonlinvoltra(void)
    BOOLEAN stepsize_ok;
    #ifdef DISPLFILE
    FILE *displfile = fopen(DISPLFILE);
    #endif
    float h,maxchange=INFTY,t,vxplus,vyplus,xguess,yguess;
    int i,j,k;
    do
    initcond();
    nblurs++;
    if (minpop<0.0)
    fprintf(stderr,
    "Minimum population negative, will increase sigma to %f\n",
    SIGMA*pow(SIGMAFAC,nblurs));
    while (minpop<0.0);
    h = HINITIAL;
    t = 0; // Start at time t=0.
    // (x[j][k],y[j][k]) is the position for the element that was at position
    // (j,k) at time t=0.
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    x[j][k] = j;
    y[j][k] = k;
    calcv(0.0);
    // (gridvx[j][k],gridvy[j][k]) is the velocity at position (j,k).
    // (vx[j][k],vy[j][k]) is the velocity at position (x[j][k],y[j][k]).
    // At t=0 they are of course identical.
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    vx[j][k] = gridvx[j][k];
    vy[j][k] = gridvy[j][k];
    i = 1; // i counts the integration steps.
    // Here is the integrator.
    do
    stepsize_ok = TRUE;
    calcv(t+h);
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    // First take a naive integration step. The velocity at time t+h for
    // the element [j][k] is approximately
    // v(th,x[j][k]+hvx[j][k],y[j][k]hvy[j][k]).
    // The components, call them vxplus and vyplus, are interpolated from
    // gridvx and gridvy.
    vxplus = intpol(gridvx,x[j][k]hvx[j][k],y[j][k]hvy[j][k]);
    vyplus = intpol(gridvy,x[j][k]hvx[j][k],y[j][k]hvy[j][k]);
    // Based on (vx[j][k],vy[j][k]) and (vxplus,vyplus) we expect the
    // new position at time t+h to be:
    xguess = x[j][k] + 0.5h(vx[j][k]+vxplus);
    yguess = y[j][k] + 0.5h(vy[j][k]+vyplus);
    // Then we make a better approximation by solving the two nonlinear
    // equations:
    // xappr[j][k]-0.5hv_x(t+h,xappr[j][k],yappr[j][k])-
    // x[j][k]-0.5hvx[j][k]=0,
    // yappr[j][k]-0.5hv_y(t+h,xappr[j][k],yappr[j][k])-
    // y[j][k]-0.5hvy[j][k]=0
    // with Newton-Raphson and (xguess,yguess) as initial guess.
    // If newt2 fails to converge, exit nonlinvoltra.
    if (!newt2(h,&xappr[j][k],xguess,&yappr[j][k],yguess,j,k))
    return FALSE;
    // If the integration step was too large reduce the step size.
    if ((xguess-xappr[j][k])*(xguess-xappr[j][k])+
    (yguess-yappr[j][k])*(yguess-yappr[j][k]) > TOLINT)
    if (h<MINH)
    fprintf(stderr,
    "Time step below %f, increasing SIGMA to %f\n",
    h,SIGMA*pow(SIGMAFAC,nblurs));
    nblurs++;
    return FALSE;
    h /= 10;
    stepsize_ok = FALSE;
    break;
    if (!stepsize_ok) continue;
    else
    t += h;
    maxchange = 0.0; // Monitor the maximum change in positions.
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    if ((x[j][k]-xappr[j][k])*(x[j][k]-xappr[j][k])+
    (y[j][k]-yappr[j][k])*(y[j][k]-yappr[j][k]) > maxchange)
    maxchange =
    (x[j][k]-xappr[j][k])*(x[j][k]-xappr[j][k])+
    (y[j][k]-yappr[j][k])*(y[j][k]-yappr[j][k]);
    x[j][k] = xappr[j][k];
    y[j][k] = yappr[j][k];
    vx[j][k] = intpol(gridvx,xappr[j][k],yappr[j][k]);
    vy[j][k] = intpol(gridvy,xappr[j][k],yappr[j][k]);
    h *= 1.2; // Make the next integration step larger.
    if (i%10==0) printf("time %f\n",t);
    i++;
    } while (i<MAXINTSTEPS && t<TIMELIMIT && maxchange>CONVERGENCE);
    if (maxchange>CONVERGENCE)
    fprintf(stderr,
    "WARNING: Insufficient convergence within %i steps, time %f.\n",
    MAXINTSTEPS,TIMELIMIT);
    #ifdef DISPLFILE
    // Write displacement field to file.
    fprintf(displfile,"time %f\nminx %f\nmaxx %f\nminy %f\nmaxy %f\n",
    t,minx,maxx,miny,maxy);
    fprintf(displfile,"sigma %f\n",SIGMA*pow(SIGMAFAC,nblurs-1));
    fprintf(displfile,"background %f\nlx\nly\n\n",0,lx,ly);
    for (j=0; j<=lx; j++) for (k=0; k<=ly; k++)
    fprintf(displfile,"j %i, k %i, x %f, y %f\n",j,k,x[j][k],y[j][k]);
    fclose(displfile);
    #endif
    return TRUE;
    // Function to transform points according to displacement field.
    POINT transf(POINT p)
    float deltax,deltay,den,t,u;
    int gaussx,gaussy;
    POINT a,b,c,d,ptr;
    p.x = (p.x-minx)*lx/(maxx-minx);
    p.y = (p.y-miny)*ly/(maxy-miny);
    gaussx = (int)p.x;
    gaussy = (int)p.y;
    if (gaussx<0 || gaussx>lx || gaussy<0 || gaussy>ly)
    fprintf(stderr,"ERROR: Coordinate limits exceeded in transf.\n");
    exit(1);
    deltax = p.x - gaussx;
    deltay = p.y - gaussy;
    // The transformed point is the intersection of the lines:
    // (I) connecting
    // (1-deltax)(x,y[gaussx][gaussy])deltax(x,y[gaussx1][gaussy])
    // and
    // (1-deltax)(x,y[gaussx][gaussy1])+deltax(x,y[gaussx+1][gaussy1])
    // (II) connecting
    // (1-deltay)(x,y[gaussx][gaussy])deltay(x,y[gaussx][gaussy1])
    // and
    // (1-deltay)(x,y[gaussx1][gaussy])+deltay(x,y[gaussx+1][gaussy1]).
    // Call these four points a, b, c and d.
    a.x = (1-deltax)*x[gaussx][gaussy] + deltax*x[gaussx+1][gaussy];
    a.y = (1-deltax)*y[gaussx][gaussy] + deltax*y[gaussx+1][gaussy];
    b.x = (1-deltax)*x[gaussx][gaussy+1] + deltax*x[gaussx1][gaussy1];
    b.y = (1-deltax)*y[gaussx][gaussy+1] + deltax*y[gaussx1][gaussy1];
    c.x = (1-deltay)*x[gaussx][gaussy] + deltay*x[gaussx][gaussy+1];
    c.y = (1-deltay)*y[gaussx][gaussy] + deltay*y[gaussx][gaussy+1];
    d.x = (1-deltay)*x[gaussx+1][gaussy] + deltay*x[gaussx1][gaussy1];
    d.y = (1-deltay)*y[gaussx+1][gaussy] + deltay*y[gaussx1][gaussy1];
    // Solve the vector equation a+t(b-a) = c+u(d-c) for the scalars t, u.
    if (fabs(den=(b.x-a.x)(c.y-d.y)+(a.y-b.y)(c.x-d.x))<1e-12)
    fprintf(stderr,"ERROR: Transformed area element has parallel edges.\n");
    exit(1);
    t = ((c.x-a.x)(c.y-d.y)+(a.y-c.y)(c.x-d.x))/den;
    u = ((b.x-a.x)(c.y-a.y)+(a.y-b.y)(c.x-a.x))/den;
    if (t<-1e-3|| t>1+1e-3 || u<-1e-3 || u>1+1e-3)
    fprintf(stderr,"WARNING: Transformed area element non-convex.\n");
    ptr.x = (1-(a.x+t(b.x-a.x))/lx)minx + ((a.x+t(b.x-a.x))/lx)maxx;
    ptr.y = (1-(a.y+t(b.y-a.y))/ly)miny + ((a.y+t(b.y-a.y))/ly)maxy;
    return ptr;
    // Function to read spatial features from user-specified file and map to
    // cartogram.
    void cartogram(void)
    char id[LINELENGTH],line[LINELENGTH];
    FILE infile,outfile;
    float xcoord,ycoord;
    POINT p;
    infile = fopen(MAPGENFILE);
    outfile = fopen(CARTGENFILE,"w");
    while (!readline(line,infile))
    if (sscanf(line,"%s %f %f",&id,&xcoord,&ycoord)==3)
    p.x = xcoord;
    p.y = ycoord;
    p = transf(p);
    fprintf(outfile,"%s %f %f\n",id,p.x,p.y);
    else if (sscanf(line,"%f %f",&xcoord,&ycoord)==2)
    p.x = xcoord;
    p.y = ycoord;
    p = transf(p);
    fprintf(outfile,"%f %f\n",p.x,p.y);
    else
    sscanf(line,"%s",&id);
    fprintf(outfile,"%s\n",id);
    fclose(infile);
    fclose(outfile);
    main(void)
    BOOLEAN n;
    char c;
    FILE genfile,psfile = fopen(MAP2PS);
    float oldlx,oldly,oldmaxx,oldmaxy,oldminx,oldminy,totarea;
    int i,polyctr,regctr;
    // Read the polygon coordinates.
    if ((genfile = fopen(MAPGENFILE)) == NULL)
    fprintf(stderr,"ERROR: Cannot find MAPGENFILE\n");
    exit(1);
    countpoly(genfile);
    fclose(genfile);
    genfile = fopen(MAPGENFILE);
    countcorn(genfile);
    fclose(genfile);
    genfile = fopen(MAPGENFILE);
    readcorn(genfile);
    fclose(genfile);
    makeregion();
    printf("%i polygon(s), %i region(s)\n",npoly,nregion);
    printf("lx=%i, ly=%i\n",lx,ly);
    // Calculate total area.
    //totarea = 0.0;
    //for (regctr=0; regctr<nregion; regctr++)
    // printf("region %i has area %f, contains %i polygons\n",regionid[regctr],
    // regionarea(nregcorn[regctr],regcorn[regctr]),npolyinreg[regctr]);
    // totarea += regionarea(nregcorn[regctr],regcorn[regctr]);
    //printf("totarea = %f\n",totarea);
    // Make map.
    pspicture(psfile);
    fclose(psfile);
    // Allocate memory for arrays.
    gridvx = (float*)malloc((lx+1)*sizeof(float));
    gridvy = (float*)malloc((lx+1)*sizeof(float));
    rho = (float*)malloc((lx+1)*sizeof(float));
    rho_0 = (float*)malloc((lx+1)*sizeof(float));
    vx = (float*)malloc((lx+1)*sizeof(float));
    vy = (float*)malloc((lx+1)*sizeof(float));
    x = (float*)malloc((lx+1)*sizeof(float));
    xappr = (float*)malloc((lx+1)*sizeof(float));
    y = (float*)malloc((lx+1)*sizeof(float));
    yappr = (float*)malloc((lx+1)*sizeof(float));
    within = (int*)malloc((lx+1)*sizeof(int));
    for (i=0; i<=lx; i++)
    gridvx = (float)malloc((ly+1)sizeof(float));
    gridvy = (float)malloc((ly+1)sizeof(float));
    rho = (float)malloc((ly+1)sizeof(float));
    rho_0 = (float)malloc((ly+1)sizeof(float));
    vx = (float)malloc((ly+1)sizeof(float));
    vy = (float)malloc((ly+1)sizeof(float));
    x = (float)malloc((ly+1)sizeof(float));
    xappr = (float)malloc((ly+1)sizeof(float));
    y = (float)malloc((ly+1)sizeof(float));
    yappr = (float)malloc((ly+1)sizeof(float));
    within = (int)malloc((ly+1)sizeof(int));
    // Digitize the density.
    bboxes();
    interior();
    digdens();
    // Solve the diffusion equation.
    do n = nonlinvoltra(); while (!n);
    // Print cartogram generate file.
    cartogram();
    // Read the transformed polygon coordinates.
    oldlx = lx;
    oldly = ly;
    oldmaxx = maxx;
    oldmaxy = maxy;
    oldminx = minx;
    oldminy = miny;
    genfile = fopen(CARTGENFILE,"r");
    countpoly(genfile);
    fclose(genfile);
    genfile = fopen(CARTGENFILE,"r");
    countcorn(genfile);
    fclose(genfile);
    lx = oldlx;
    ly = oldly;
    maxx = oldmaxx;
    maxy = oldmaxy;
    minx = oldminx;
    miny = oldminy;
    genfile = fopen(CARTGENFILE,"r");
    readcorn(genfile);
    fclose(genfile);
    makeregion();
    // Make cartogram
    psfile = fopen(CART2PS);
    pspicture(psfile);
    fclose(psfile);
    The part of the code where the bus error occurs is this:
    void interior(void)
    int i,inhowmanyregions,inregion[2],j,k,l,m,n,regctr;
    // Initialize within[][]. -1 means outside all regions.
    for (i=0; i<=lx; i++) for (j=0; j<=ly; j++) within[j] = -1;
    // Fill within[][].
    for (i=0; i<nregion; i++) for (j=0; j<npolyinreg; j++)
    for (k=0, n=npolycorn[polyinreg[j]]-1;
    k<npolycorn[polyinreg[j]]; n=k++)
    for (l=(int)ceil(MIN(polycorn[polyinreg[j]][k-1].y,
    polycorn[polyinreg[j]][k].y));
    l<MAX(polycorn[polyinreg[j]][k-1].y,
    polycorn[polyinreg[j]][k].y); l++)
    for (m=(int)floor(bbminx[polyinreg[j]]);
    m<(polycorn[polyinreg[j]][n].x-
    polycorn[polyinreg[j]][k].x)*
    (l-polycorn[polyinreg[j]][k].y)/
    (polycorn[polyinreg[j]][n].y-
    polycorn[polyinreg[j]][k].y)+
    polycorn[polyinreg[j]][k].x;
    m++)
    within[m][l] = i-within[m][l]-1;
    I really have no idea what is going on. Can anyone help?
    Thanks,
    mooseguy

    orangekay wrote:
    That is absolutely unreadable.
    I agree completely. How about also providing a link to a set of input files so that we could actually run the code ourselves? Otherwise, there is no chance to debug the source code, it is just a mess.
    You might have better luck with an older version of the file. To quote the comments:
    // Modified on March 31, 2005. Initialized maxchange in nonlinvoltra() as
    // INFTY. Replaced crnmbr() by a similar, but faster routine interior().
    // Many thanks to Stuart Anderson for pointing out this shortcut.
    I suspect that the "interior" function is just plain incorrect. It doesn't matter if it runs on some other OS. Something about it is wrong and the code is so cryptic that it can't be deciphered.

  • How do I perform an FFT or ReFFT in VB6 using measurement studio

    I am trying to make a filter by taking a 1D array of voltages and doing a ReFFT() and padding the high frequencies in the array with a value of zero and then going back to time domain with ReInvFFT().  Here is my code which does not seem to be filtering any high frequency content.
    lngReturn = frmMain.CWAI1.AcquireData(varData, varBinaryCodes)
    frmMain.CWDSP1.ReFFT varData, realdata, imgdata
    For i = (UBound(realdata) / 100) To UBound(realdata)
        realdata(i) = 0
        imgdata(i) = 0
    Next
    frmMain.CWDSP1.ReInvFFT realdata, imgdata, varData
    After the function is done varData has a 1D array of filtered real voltage values.  It does not seem to be filtering and I get back exactly what I pass in.  I know it must be something simple that I am missing perhaps the variable cannot be used to pass in and then  back out the values??
    Please shed some light as there are NO examples of this use of FFT.
    Thanks

    Arthur,
    Thank you for your reply.  But at this point, one of my points of confusion is what software I have available to me.  I wish I had a useful central help desk to call up and just say, "Hey, load me up with all of the professional version(s) of Visual
    Studio.  But I do not know what we have license to.  And I kind of need to know what the options are, so that I can ask a specific question of our vast buracracy.
    For now, I have downloaded only free versions of Visual Studio client software.  Since my company does have servers running Microsoft SQL Server, I am going to assume that we have proper licensing for those servers.  But does that server license
    allow me to get any professional versions of the PC client software for the various Visual Studio(s) 2012?
    And if I get a professional version of Visual Studio 2012, does that do away with the three different flavors that I have right now?  I have 2012 versions of SQL Server Management Studio, Visual Studio Express, and Visual Studio Shell (Integrated).
    Your feedback is much appreciated.
    Thanks!

  • Can anybody help with some subtleties to this code?

    Hello,
    I was wondering if anyone could take a look at the code in general for me, which is to go in an 'effects' pedal.  The first while loop is for a footswitch that either reads high or low.  It controls the mode of the pedal.  the first mode is the default, where no signal manipulation occurs, and what comes in the audio input just comes out; the second mode stores data (fundamental frequency, average FFT amplitude from 3 kHz to 5 kHz) from the E string of a guitar, which is plucked after that mode is actuated; the third mode does the same for the A string; and the final mode takes in a note on the E or string, recognizes it as either on the E or A string, and adjusts the frequency content to be in tune based the data stored in modes 2 and 3.  then the new magnitude vector is put through an inverse FFT and output through the DAC and sounded.
    What I'm curious to know is, are there any blatant errors I've made?  Will the signal coming out of the inverse FFT be sounded through the DAC? does it need to be changed from a double to an I32?  I am trying to debug, but right now I'm having problems getting the correct output voltages on the Blackfin (the SPORT 0 pinout doesn't seem to match what is on the board....).
    also, I was wondering if I will lose any phase information on the signal that I get out compared to the signal I put in.  Will it be detectable by ear?  Or would it all sound the same?  along with the phase change for some signals, using an inverse FFT resulted in a loss of amplitude (from about 1 to on the order of 10^-5.  that's a lot!).  but when the test program was played on my computer, the phase change was not noticeable from the output signal, and neither was the magnitude change!  the output played at the same volume as in the input, despite the waveform chart on the front panel showing an amplitude five orders of magnitude less!  can you help explain that to me?  what can I do, will it matter coming out of the Blackfin and into an amplifier?
    i appreciate any input anyone can give me on all this!!  thank you!!
    Attachments:
    102 project.vi ‏287 KB

    Hi noahgrant,
    I've had a look at your vi and can make some suggestions that you can try.
    From what I can see, your while loop with the wait timer of 100 ms and continue if true condition on it (we shall cool this loop 1) will always keep running.
    The other while loop (loop 2) is nested within a couple of case structures and will only run once (false to a continue if true condition). The default case has a different condition and will always run, instead.
    From what I can make of this, loop 2 and all its case structures will only run once (except for case 0, default). WHEN it runs will depend on how it was compiled on the Blackfin - case structure/loop2 may go first or loop 1 will go first.
    If you want loop 2 to go first (and only go once) then you need to link the output of the case structure to the input of loop 1 - this can be done by simply wiring up a boolean to it (data flow rules).
    If you want loop 2 to always be checking the status of the mode then you need to place the whole case structure within a while loop, to run continuously.
    That is a very quick interpretation of what you are trying to do. There are a lot of question marks (missing vi's) and some heavy use of local variables. I would consider using sub-vi's, in particular functional global variables (FGV's).
    I hope that helps.

  • How do I get my DAQ to have frequency resolution of 0.5 hz after FFT ?

    Hi all,
    I was just wondering how do I get a frequency resolution of 0.5hz after the FFT from this VI.
    Or perhaps there can be some advice on where I must improve it.
    Appreciate all advice, thanks!
    -How81
    as of now, the waveform graph i obtained, I wanted it to be of 0.5 hz, hence I used its property to set it at 0.5hz.
    Message Edited by How81 on 10-13-2007 03:31 AM
    Attachments:
    Final DAQ.vi ‏107 KB

    Hi How81,
       I won't comment on your code, I'm unable to see it (I have LV 71.1).  So I'll discuss a little bit the DSP.
       If you want such a low frequency resolution, you have to sample a little longer.  If your top-frequency is 25 Hz, I don't see the need for sampling at 1 kS/s, that gives a Nyquist freq. of 500 Hz!!! You'll only have a large amount of data, not of your interest!
       Another good advice, is to sample for a long time.  To have a REAL resolution of 0.5 Hz, It is not sufficient to sample 2 MSample for one microsecond! So, you have to sample at least for 2 seconds, but I strongly suggest to sample for a longer time.  In DSP,you almost always have to use some tolerances.
       Another matter is FFT resolution due to number of samples. If you sample 2 kS/s for 1 second, and you'll get a "2000 point FFT (...)", you'll see 1000 equally spaced frequency samples, from 0 to 1000 Hz (ie 1 Hz spacing), you can't have a resolution of more than 1 Hz. I would suggest something like sampling at (say for tolerance) 100 S/s, (top freq. you seee in FFT: 50 Hz), for 10 seconds: so you have 1000 points, but you have a resolution of 0.1 Hz.
       A part from this, always consider that FFT works in 2-powers, so it's better to do a 1024 points FFT.   Then you can use zero padding techniques to "adjust" fft to see samples at right frequencies, or sample 1024*10 samples in time at 1024 S/s and then decimate..... you have many choices.
       Hope this can help. Have a nice day!
    graziano

  • Rule of thumb for the number of averages in an FFT for vibration analysis?

    I'm doing vibration analysis on rotating machinery and would like to average the FFT to minimize variations of the data (rms averaging).  How does one choose the optimum number of averages? 
    Also, why is it necessary to specify the number of averages (for example, in the Spectral Measurements express VI) as well as telling the VI to restart averaging.  Would not the latter would be sufficient when the Spectral Measurements VI is enclosed in a loop?  Thanks.

    Thanks for your post. 
    In my experience 20 is a good number.  It really depends however on a number of factors. 
    1) does the frequency of the rotation of the machine (speed) change?  If so, averaging from an FFT would not work well.  I would use the Order Spectrum in the Sound and Vibration Measurement Suite if speed changes.
    2) are loads changing (and speed is constant or you are using order spectrum)?  If so you will want a smaller number of averages so you do not average out the effect of fast load changes.
    3) try a few numbers and note when the noise floor appears stable.  This may be the best method to choose the number. 
    4) how often do you want a result?  A smaller number of averages will produce an "averae complete" result more often. 
    Use the averages complete boolean to gate passing on the results (to the user interface, file, further analysis, etc.).  With restart averaging on, it will restart another averaging process and toggle the boolean (gate).
    Hope this helps. 
    Preston Johnson
    Principal Sales Engineer
    Condition Monitoring Systems
    Vibration Analyst III - www.vibinst.org, www.mobiusinstitute.com
    National Instruments
    [email protected]
    www.ni.com/mcm
    www.ni.com/soundandvibration
    www.ni.com/biganalogdata
    512-683-5444

  • Calculating BPM using either Peak Detection point by point or FFT

    Hi Guys
    Im new to Labview and have absolutely no idea on programming and stuff. Im doing a project on Heart Rate monitor.
    I'm using labview to read the analog input to an Arduino Mini. In my attached VI im using Peak Detection Point by point to calculate the BPM but it doesnt seem to work. I took references from several VIs to arrive at my VI. 
    My instructor told me I could try using FFT to calculate the BPM as well but Im not sure how to carry it out in Labview.
    Hope you guys can help me with this.
    Thanks alot!
    Attachments:
    heart signal.jpg ‏43 KB
    Heart Monitor.vi ‏24 KB

    Ok, we have some problems here.
    1.  The Data Bits property is the number bits for a single character that is being transmitted.  You should not use that.  Since you are using an Arduino, it should be sending the termination character.  So just tell the VISA Read to read maximum number of bytes you expect from a single message or just some large number (like 25).  The VISA Read will stop reading the port when it encounters the termination character.
    2. The String Subset is not doing anything.  Just remove it.
    3.  You should move your  Wait to be outside of the case structure.  As is currently written, if you are not taking readings you will use up all of your CPU.
    4.  You should have labels for all of your controls and indicators.
    5.  Your time calculation is completely wrong.  You want to subtract the time of the previous peak from the current peak.  I recommend you use a Feedback Node to do this.
    Here's a slightly cleaned up version of your code.
    There are only two ways to tell somebody thanks: Kudos and Marked Solutions
    Unofficial Forum Rules and Guidelines
    Attachments:
    Heart Monitor_BD.png ‏42 KB

  • Number of Points used in FFT calcuation​s using Spectral Measuremen​ts

    Hi folks,
    I'm a pretty new user of labview (Ver 7.1) and I am trying to perform spectral analysis of power systems to ensure that they comply with stated standards. I'm using PXI-1002 system with PXI-6025E DAQ cards. I am able to get the analogue data into the program and display the time and frequency domain data to screen however I require a specific resolution to the spectral analysis to comply with the standard. obviously I can set the sampling frequency but I am unable to set the number of points of the actual FFT using either the "spectral measurements" function or other specific FFT VIs.
    Can the number of points be set manually or do the functions some how deside the best number of points depending on the amount of data passed to it, I've found that increasing the "Scan to read at a time" value of the AI config VI I'm using seems to increase the resolution but I don't know how the FFT functions deal with "Scan to read at a time" values that are not of 2^n.
    Cheers
    The Fat Controller
    90% of all experts aggree that 1 out of 10 experts are wrong

    Hi,
    The answer lies in the labVIEW Help file< If you dig deep enough through the hierarchy of the Spectral Measurment Express VI's, you will end up eventually to the Power Spectrum.vi or Real FFT.vi that can be found in the Analyze>>Signal Processing>>Frequency Domain Palette (see screenshot attached)>
    The computation details are given in the help for those VIs
    I will let you go through those files for details, but basically, when the number of samples in the input signal is a valid power of 2, the VIs compute the fast Fourier transform using the a fast radix-2 FFT algorithm.
    When the number of samples in the input sequence is not a valid power of 2 but is factorable as the product of small prime numbers, the VIs compute the discrete Fourier transform using an efficient DFT algorithm according to the type of trnasorm that is executed (i.e Real, Complex)
    But the help file explains it better than me
    Hope this helps,
    Cyril Bouton
    Active LabVIEW Developper
    Attachments:
    ScreenShot008.gif ‏29 KB

  • How to do a FFT tranformation for every file in a folder of another folder?

    Dear all,
    I have a folder A, there are seven folders in folder A, I call these seven folders B. and there are 100 files in every folder B. These files are all the data information of current.
    ok, now I need to transfer every current file into a FFT tranformation, and save the transferred files corresponding to the original file.
    Does anyone have some idea? Thank you for any help!
    Jing

    Hi Mike
    In this way, How can I save the transferred files as the same way as the original files and folders?
    after FFT transformation, I hope to get 100 files in every "transferred B" and seven "transferred B" folders in one "transferred A" folder.
    Jing 

Maybe you are looking for

  • How to force iOS to ask for S/MIME private key password every time?

    Hi, I am using S/MIME signing and encryption on my iOS devices and I am very surprised that the system does not require password for encrypting, decrypting or signing a message when using my cell phone. Everyone with access to it (be it a thief who s

  • Report for Branch wise Trail Balance & Profitability

    Hi, I need a report for Branch wise trail balance and Profitability. Is there any standard report in FI for that or do i need to define with Report painter functionality? Please advise BR, Yadayya

  • Can't open documents from icloud

    I have Iworks 09 and have it installed on 3 macbooks. on the 2 macbook pro's it works fine but on the macbook air i can't seem to use versions or open/safe documents to the cloud. I checked the cloud setting and everything is as it should be.

  • Is there a way to use the Picture viewer app with linked folders?

    I have a fairly extensive photo collection (literally in the tens of thousands we have taken over the years, and growing) on my PC that I have access to through BB link/file manager...one picture at a time...with no thumbnails... Is there any possibl

  • Problem in opening the app shadowgun

    My shadowgun dead zone is crashing whenever I try to open it