Cycle in controlling

Hi,
Can anyone tell me with what t-code can I create a cycle in controlling ? And I also need some info about this kind of cycle.
Thanks
Regards,
Sorin

Hi,
The transactions are KSV1 and KSU1 (for distribution and assessment). You can read more about definition of cycles here:
http://help.sap.com/saphelp_47x200/helpdata/en/5b/d2200743c611d182b30000e829fbfe/frameset.htm
Regards,
Eli

Similar Messages

  • Account Life cycle: Screen Control

    Hi experts.
    I want to:
    Display additional assignment blocks that should only be available if the account is in a certain life cycle stage.
    Hide assignment blocks that should not be available in certain life cycle stages.
    I have implemented the Business Add-In (BAdI) BADI_CRM_BP_UIU_VIEWS from the enhancement spot CRM_UIU_BP_ENHANCEMENT with the filter value BP_HEAD as COMPONENT. Within the implementation of the interface method IF_UIU_BP_VIEWS~DETERMINE_VIEWS i want to evaluate the current life cycle stage, and the corresponding role exclusion group, by the current instance of the custom controller BP_HEAD/Lifecycle. The custom controller should be retrieved from the referenced view controller passed in the parameter IR_VIEW_CONTROLLER by calling GET_CUSTOM_CONTROLLER() and providing the custom controller name BP_HEAD/Lifecycle.
    My problem is that I can´t locate the records containing current life cycle stage, and the corresponding role exclusion group.
    Anybody can hel me?
    Thanks in advance.
    Paco.

    Hi,
    You can use two BADIs to achieve this either ORDER_SAVE(Implement the badi) and write ur ststus change code over here or
    BADI - CRM_ORDER_STATUS(Implement the badi) 
    for status change use the below code to get it...
    call function 'CRM_STATUS_CHANGE_EXTERN'
          exporting
            client              = sy-mandt
            objnr               = lv_order_guid
            user_status         = 'E0012'
            no_check            = 'X'
          exceptions
            object_not_found    = 1
            status_inconsistent = 2
            status_not_allowed  = 3
            others              = 4.
        if sy-subrc <> 0.
    MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
            WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
        endif.
    hope this solves ur problem.
    Regards
    Jegadesh Balan T

  • Using labview cosimulation, how to control PWM duty cycle in multisim

    I am new to using Multisim with LabVIEW using cosimulation. I want to ask if there is a PWM component in Multisim that can have its duty cycle be controlled using LabVIEW? I have an algorithm in LabVIEW that outputs duty cycle values from 0 to 1, representing duty cycle percentages.
    How do I control the PWM duty cycle in Multisim using LabVIEW cosimulation?
    Many thanks,
    SPECTRE
    Solved!
    Go to Solution.

    Hi Spectre,
    In Multisim, search for the parts base on functionality, there are some PWM models in the database.  Have a look at this knowledge base  if you don't know how to search for parts:
    http://digital.ni.com/public.nsf/allkb/7309A5CABC677296862577ED006EC99E
    Aslo, have a look at this knowledgebase:
    http://digital.ni.com/public.nsf/allkb/EF391C48CF71AE4F862571B900644F84
    This article shows how you can get Mutlisim and LabVIEW to co-simiualte:
    http://www.ni.com/white-paper/13663/en
    I hope this helps
    Tien P.
    National Instruments

  • SUPPLY AREA  & Controlling Cycle

    Hello,
    I am working with PP REM scenario.
    I want to know more about the customizing and master data and Function of following terms.
    1. SUPPLY AREA
    And
    2.  Controlling Cycle
    Maulik

    Dear Maulik,
    Dear Maulik,
    The Master data required for Kanban production control includes
    1.Supply Area:A supply area is an interim storage location on the shop floor which is used to provide material directly to the
    production line or the work center.
    The supply area can be a shelving area, an area marked off on the ground, special boxes and so on. Defining the supply areas
    for a plant is part of the material flow design for KANBAN. The supply area is defined in Customizing and is assigned the following
    objects:
    Plant
    Storage location
    Person responsible
    Goods movements are posted to the storage location assigned to the supply area.
    One storage location can be assigned to several supply areas, however, one supply area cannot be assigned to several storage locations.
    2.Control Cycle: The control cycle defines the relationship between the demand source and the supply source.
    The control cycle contains the following control data for KANBAN production:
    ●     Kanban circulation, that is, the number of kanbans and the quantity per kanban or per call item as well as the number of load carriers
    ●     The basic data required for automatic kanban calculation, if necessary
    ●     Replenishment strategy
    ●     Printing kanbans, if necessary
    ●     The delivery address, if necessary
    3.Replenishment Stragegy: The replenishment strategies define in the control cycle how replenishment is to take place:
    Using in-house production
    Using external procurement
    Using stock transfer
    The replenishment strategies also determine whether and which replenishment elements (run schedule quantities, production orders, and so on) are created by the kanban signal.
    The replenishment strategy is assigned to the material in the control cycle.
    1.You can create the supply area by executing PK05
    2.Control cyce can be created using PK01.
    Regards
    S Mangalraj

  • How to adjust a "control array" size

    I have a program that creates a digital PWM signal with variable duty cycle. The duty cycle changes every 50 ms, but the overall wave frequency stays at a frequency determined by the user. I have the VI attatched.
    My problem is this...I need to be able to control the overall cycle time. This means the size of my array of duty cycles needs to adjust based on the cycle time (i.e. a cycle time of 1 second would require 20 of the 50 ms slots, while a 1.3 second cycle would need 26).
    I currently have only 4 slots in my array, meaning the total cycle time is .2 s. I understand how to manually add and remove elements to the array, but I can't figure out how to add a control to it so that the array size changes automatically, allowing much quicker entry of data. As of now I can make it work, it just takes super long to add or delete array elements. The ideal situaton would have a constant control for cycle time divided by 50 that would change the array size.
    I can't find any info on this, and I think I even saw a post asking that this kind of feature be added. I'm relatively new to this program.
    Thanks
    Solved!
    Go to Solution.
    Attachments:
    var_duty_cycle.vi ‏25 KB

    Currently, your VI is a one-shot deal. What you need is a state machine that updates the pct duty cycle array control as a function of the frequency while the current I/O code is idle.
    I would use an array of clusters, where each cluster contains e.g. a sequence number, a duty cycle, and a string as element label. Show the scrollbar and set the size whenever the relevant inputs change. Do you want to reset the current setting when the number changes or do you want to retain the current settings as much as possible? You could just use the existing values, reshape to the larger or smaller size, and write it back to the control via a local variable. Set all elements  except the percent to disabled so they act as indicators and cannot be changed by the user.
    (You also need to program around it if the operator tries to manually add more elements. A better solution would be this idea, so vote for it .)
    Some more general comments bout your code:
    Why do you use extended precision floating point. All your waits are internally just integers. EXT makes no sense
    There is a primitive for 1/x. However, you could just do a 1000/x and eliminate the multiplication afterwards. SInce you are dealing with integers, you can even do the division using quotient&remainder. Depending on the allowed frequency range there are possibly no orange data needed at all.
    Make the diagram constant representation match the rest of the code.
    The pulses/50ms indicator belongs before the loop. No need to recalculate and refresh it over and over from the same input values.
    LabVIEW Champion . Do more with less code and in less time .

  • CO11N - controlling GR Storage Bin

    First off, We do NOT use batches with our production orders.
    We would like to be able to control what STORAGE BIN within a storage location a gr from CO11N will be stored to. 
    Currently all production orders automatically create a transfer order (mvmt type 103) that hits storage bin WIP. 
    My preference would be to be able to use control cycles to control the GR Bin location, but if there is another place in config, I would be open to that. 
    Thanks in advance!

    Hi,
    Please check the below link it will help you.
    http://www.sap-img.com/warehouse/how-to-transfer-stock-to-storage-bin.htm
    Regards,
    Alok Tiwari

  • Performance issues

    Hi,
    The program(developed by someother person) which was given to me is having performance issue. Its giving RUNTIME ERROR 'TIME LIMIT EXCEEDED'. Can u please suggest me in what way i can improve the performance of the program.
    please help me in resolving this.
    Helpful answers will be rewarded.
    TABLES : MARA, "General Material Data
    MARC, "Plant Data for Material
    VBAP, "Sales Document: Item Data
    MARD, "Storage Location Data for Material
    MAST, "Material to BOM Link
    MKPF, "Header: Material Document
    MSEG, "Document Segment: Material
    PKHD, "Control Cycle
    PKPS, "Control Cycle Item / Kanban
    PVBE, "Supply area
    ZTGRP, "Wabco Technology Group table
    ZZC10. "Kanban status table
    I N T E R N A L T A B L E D E C L A R A T I O N *
    INTERNAL TABLE FOR TECH.GROUP AND PLANT
    DATA: BEGIN OF IT_MARC_ZTGRP OCCURS 0,
    MATNR LIKE MARC-MATNR,
    WERKS LIKE MARC-WERKS,
    ZZPTG LIKE ZTGRP-ZZPTG,
    ZZPTD LIKE ZTGRP-ZZPTD,
    END OF IT_MARC_ZTGRP.
    INTERNAL TABLE FOR RETURN VALUES
    DATA IT_RETURN LIKE TABLE OF BAPIRET2 WITH HEADER LINE.
    INTERNAL TABLE FOR SUBASSEMBLY AND FINISHED GOOD
    DATA: BEGIN OF IT_MATERIAL OCCURS 0,
    IDNRK LIKE STPO-IDNRK,
    MATNR LIKE MAST-MATNR,
    END OF IT_MATERIAL.
    INTERNAL TABLE FOR OUTPUT YESTERDAY
    DATA: BEGIN OF IT_KBED_KAKO OCCURS 0,
    KBEAREST LIKE KBED-KBEAREST,
    KRUEREST LIKE KBED-KRUEREST,
    KEINH LIKE KBED-KEINH,
    END OF IT_KBED_KAKO.
    INTERNAL TABLE FOR MATERIAL AND PLANT
    DATA: BEGIN OF IT_PLANT OCCURS 0,
    MATNR LIKE MARC-MATNR,
    WERKS LIKE MARC-WERKS,
    END OF IT_PLANT.
    DATA: BEGIN OF IT_COBK OCCURS 0,
    RUECK LIKE COBK-REFBN,
    END OF IT_COBK.
    DATA: BEGIN OF IT_COEPL OCCURS 0,
    KOKRS LIKE COEPL-KOKRS,
    BELNR LIKE COEPL-BELNR,
    END OF IT_COEPL.
    DATA: BEGIN OF IT_CAPACITIES OCCURS 0,
    LSBBTR LIKE COEPL-LSBBTR,
    MEINB LIKE COEPL-MEINB,
    END OF IT_CAPACITIES.
    DATA: BEGIN OF IT_MKPF_MSEG OCCURS 0,
    MBLNR LIKE MKPF-MBLNR,
    MJAHR LIKE MKPF-MJAHR,
    BUDAT LIKE MKPF-BUDAT,
    BWART LIKE MSEG-BWART,
    MATNR LIKE MSEG-MATNR,
    MENGE LIKE MSEG-MENGE,
    MEINS LIKE MSEG-MEINS,
    DMBTR LIKE MSEG-DMBTR,
    WERKS LIKE MSEG-WERKS,
    END OF IT_MKPF_MSEG.
    INTERNAL TABLE FOR MATERIAL-TO-BOM LINK
    DATA: IT_MAST LIKE MAST OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR MATERIAL
    DATA: BEGIN OF IT_MAT OCCURS 0,
    MATNR LIKE MARA-MATNR,
    END OF IT_MAT.
    INTERNAL TABLE FOR STORAGE LOCATION DATA FOR SUBASSEMBLY
    DATA: BEGIN OF IT_MARD OCCURS 0,
    LABST LIKE MARD-LABST,
    END OF IT_MARD.
    INTERNAL TABLE FOR PLANT FOR MATERIALS
    DATA IT_MARC LIKE MARC OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR BOM ITEM DATA
    DATA: IT_STPO LIKE STPO OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR KANBAN STATUS DATA
    DATA IT_ZZC10 LIKE ZZC10 OCCURS 0 WITH HEADER LINE.
    TEMPORARY INTERNAL TABLE FOR KANBAN STATUS DATA
    DATA IT_ZZC10_TEMP LIKE ZZC10 OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR CONTROL CYCLE
    DATA IT_PKHD LIKE PKHD OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR CONTROL CYCLE ITEM
    DATA IT_PKPS LIKE PKPS OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR MATERIAL DOCUMENT HEADER
    DATA IT_MKPF LIKE MKPF OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR MATERIAL DOCUMENT ITEM
    DATA IT_MSEG LIKE MSEG OCCURS 0 WITH HEADER LINE.
    TEMPORARY INTERNAL TABLE FOR ACTUAL QUANTITY
    DATA : BEGIN OF IT_TEMP OCCURS 0,
    TECH LIKE ZTGRP-ZZPTD,
    MATNR LIKE ZZC10-MATNR,
    FINISHED LIKE MAST-MATNR,
    PKNUM LIKE PKHD-PKNUM,
    WERKS LIKE ZZC10-WERKS,
    GSMNG LIKE PLAF-GSMNG,
    MEINS LIKE PLAF-MEINS,
    BEHAZ LIKE PKHD-BEHAZ,
    BEHMG LIKE PKHD-BEHMG,
    PKBMG LIKE ZZC10-PKBMG,
    LATEHOURS LIKE PKHD-KWBZM,
    FILLRATE TYPE P DECIMALS 2,
    REPL_LEAD_TIME TYPE P DECIMALS 3,
    QTY_1 LIKE PLAF-GSMNG,
    QTY_2 LIKE PLAF-GSMNG,
    QTY_3 LIKE PLAF-GSMNG,
    QTY_4 LIKE PLAF-GSMNG,
    QTY_5 LIKE PLAF-GSMNG,
    QTY_6 LIKE PLAF-GSMNG,
    GSMNG_OUTY LIKE PLAF-GSMNG,
    MEINS_OUTY LIKE PLAF-MEINS,
    KAPBD_OUTY LIKE COEPL-LSTBTR,
    KEINH_OUTY LIKE COEPL-MEINH,
    GSMNG_OUTM LIKE MSEG-MENGE,
    MEINS_OUTM LIKE MSEG-MEINS,
    KAPBD_OUTM LIKE COEPL-LSTBTR,
    KEINH_OUTM LIKE COEPL-MEINH,
    GSMNG_BORD LIKE PLAF-GSMNG,
    MEINS_BORD LIKE MSEG-MEINS,
    KAPBD_BORD LIKE KBED-KBEAREST,
    KEINH_BORD LIKE COEPL-MEINH,
    GSMNG_TDAY LIKE PLAF-GSMNG,
    KAPBD_TDAY LIKE KBED-KBEAREST,
    GSMNG_DAY1 LIKE PLAF-GSMNG,
    KAPBD_DAY1 LIKE KBED-KBEAREST,
    GSMNG_DAY2 LIKE PLAF-GSMNG,
    KAPBD_DAY2 LIKE KBED-KBEAREST,
    GSMNG_DAY3 LIKE PLAF-GSMNG,
    KAPBD_DAY3 LIKE KBED-KBEAREST,
    GSMNG_DAY4 LIKE PLAF-GSMNG,
    KAPBD_DAY4 LIKE KBED-KBEAREST,
    GSMNG_DAY5 LIKE PLAF-GSMNG,
    KAPBD_DAY5 LIKE KBED-KBEAREST,
    STOCK_PO01 LIKE MARD-LABST,
    F_GSMNG_BORD LIKE PLAF-GSMNG,
    F_MEINS_BORD LIKE MSEG-MEINS,
    F_KAPBD_BORD LIKE KBED-KBEAREST,
    F_KEINH_BORD LIKE COEPL-MEINH,
    F_GSMNG_TDAY LIKE PLAF-GSMNG,
    F_MEINS_TDAY LIKE MSEG-MEINS,
    F_KAPBD_TDAY LIKE KBED-KBEAREST,
    F_KEINH_TDAY LIKE COEPL-MEINH,
    F_GSMNG_DAY1 LIKE PLAF-GSMNG,
    F_MEINS_DAY1 LIKE MSEG-MEINS,
    F_KAPBD_DAY1 LIKE KBED-KBEAREST,
    F_KEINH_DAY1 LIKE COEPL-MEINH,
    F_GSMNG_DAY2 LIKE PLAF-GSMNG,
    F_MEINS_DAY2 LIKE MSEG-MEINS,
    F_KAPBD_DAY2 LIKE KBED-KBEAREST,
    F_KEINH_DAY2 LIKE COEPL-MEINH,
    F_GSMNG_DAY3 LIKE PLAF-GSMNG,
    F_MEINS_DAY3 LIKE MSEG-MEINS,
    F_KAPBD_DAY3 LIKE KBED-KBEAREST,
    F_KEINH_DAY3 LIKE COEPL-MEINH,
    F_GSMNG_DAY4 LIKE PLAF-GSMNG,
    F_MEINS_DAY4 LIKE MSEG-MEINS,
    F_KAPBD_DAY4 LIKE KBED-KBEAREST,
    F_KEINH_DAY4 LIKE COEPL-MEINH,
    F_GSMNG_DAY5 LIKE PLAF-GSMNG,
    F_MEINS_DAY5 LIKE MSEG-MEINS,
    F_KAPBD_DAY5 LIKE KBED-KBEAREST,
    F_KEINH_DAY5 LIKE COEPL-MEINH,
    F_GSMNG_OUTM LIKE MSEG-MENGE,
    F_MEINS_OUTM LIKE MSEG-MEINS,
    F_KAPBD_OUTM LIKE COEPL-LSTBTR,
    F_KEINH_OUTM LIKE COEPL-MEINH,
    F_GSMNG_OUTN LIKE MSEG-MENGE,
    F_MEINS_OUTN LIKE MSEG-MEINS,
    F_KAPBD_OUTN LIKE KBED-KBEAREST,
    F_KEINH_OUTN LIKE COEPL-MEINH,
    END OF IT_TEMP.
    INTERNAL TABLE FOR PLANNED DATA
    DATA IT_PLAF LIKE PLAF OCCURS 0 WITH HEADER LINE.
    INTERNAL TABLE FOR FACTORY CALENDER AND CURRENCY
    DATA: BEGIN OF IT_T001W OCCURS 0,
    WERKS LIKE T001W-WERKS,
    BWKEY LIKE T001W-BWKEY,
    FABKL LIKE T001W-FABKL,
    END OF IT_T001W.
    V A R I A B L E S *
    DATA: AUX_BORD LIKE SY-DATUM,
    AUX_YDAY LIKE SY-DATUM,
    AUX_TDAY LIKE SY-DATUM,
    AUX_DAY1 LIKE SY-DATUM,
    AUX_DAY2 LIKE SY-DATUM,
    AUX_DAY3 LIKE SY-DATUM,
    AUX_DAY4 LIKE SY-DATUM,
    AUX_DAY5 LIKE SY-DATUM,
    AUX_CURRENT LIKE SY-DATUM,
    AUX_PREVIOUS LIKE SY-DATUM,
    AUX_TECH LIKE ZTGRP-ZZPTD,
    AUX_BUDAT LIKE MKPF-BUDAT,
    AUX_LOW LIKE MKPF-BUDAT,
    AUX_HIGH LIKE MKPF-BUDAT,
    AUX_MNG LIKE MSEG-MENGE,
    AUX_MENGE LIKE MSEG-MENGE,
    AUX_QUANT LIKE PLAF-GSMNG,
    AUX_SUM_UNIT LIKE UMADD-MSEHI,
    AUX_TIMESTAMP1 LIKE CCUPEAKA-TIMESTAMP,
    AUX_TIMESTAMP2 LIKE CCUPEAKA-TIMESTAMP,
    AUX_BUKRS LIKE T001K-BUKRS,
    AUX_BWKEY LIKE T001W-BWKEY,
    AUX_GSMNG LIKE PLAF-GSMNG,
    AUX_PKBMG LIKE ZZC10-PKBMG,
    AUX_FILL LIKE ZZC10-PKBMG,
    AUX_TOTAL LIKE ZZC10-PKBMG,
    AUX_FABKL LIKE SCAL-FCALID,
    AUX_WAERS LIKE MSEG-WAERS,
    AUX_ZZC10_HR TYPE P DECIMALS 3,
    AUX_PLAF_HR TYPE P DECIMALS 3,
    AUX_KAPBD_OUTY TYPE P DECIMALS 3,
    AUX_KAPBD_OUTM TYPE P DECIMALS 3,
    AUX_KAPBD_BORD TYPE P DECIMALS 3,
    AUX_F_KAPBD_BORD TYPE P DECIMALS 3,
    AUX_F_KAPBD_TDAY TYPE P DECIMALS 3,
    AUX_F_KAPBD_DAY1 TYPE P DECIMALS 3,
    AUX_F_KAPBD_DAY2 TYPE P DECIMALS 3,
    AUX_F_KAPBD_DAY3 TYPE P DECIMALS 3,
    AUX_F_KAPBD_DAY4 TYPE P DECIMALS 3,
    AUX_F_KAPBD_DAY5 TYPE P DECIMALS 3,
    AUX_F_KAPBD_OUTM TYPE P DECIMALS 3,
    AUX_F_KAPBD_OUTN TYPE P DECIMALS 3,
    AUX_PKHD_TIME TYPE P DECIMALS 3,
    AUX_LATEHOURS TYPE P DECIMALS 3,
    AUX_DIFF TYPE I,
    AUX_FLAG TYPE C,
    AUX_SET TYPE C,
    AUX_DATUMABSOLUT(5) TYPE P,
    AUX_FDAY LIKE SY-DATUM,
    AUX_DAYS LIKE PKHD-KWBZD,
    AUX_HOURS LIKE IT_ZZC10-TIME_EMPTY,
    AUX_TIME LIKE PKHD-KWBZM,
    AUX_PKHD_DAYS LIKE PKHD-KWBZD,
    AUX_PKHD_HOURS LIKE PKHD-KWBZM,
    AUX_TMP_DAYS LIKE PKHD-KWBZM VALUE 24,
    AUX_TMP_HRS LIKE PKHD-KWBZM,
    AUX_FILL_DAYS LIKE PKHD-KWBZD,
    AUX_FILL_HOURS LIKE AUX_HOURS,
    AUX_FILL_TIME LIKE PKHD-KWBZM,
    AUX_TOTAL_QTY LIKE PKHD-BEHMG,
    AUX_RATID LIKE PLAF-RATID,
    AUX_MATNR LIKE PLAF-MATNR,
    AUX_HEADER LIKE MARA-MATNR,
    AUX_ZZPTG LIKE MARC-ZZPTG,
    AUX_PEDTR LIKE PLAF-PEDTR,
    AUX_KRUEREST LIKE KBED-KRUEREST,
    AUX_KBEAREST LIKE KBED-KBEAREST,
    AUX_KRUEREST_T LIKE KBED-KRUEREST,
    AUX_KBEAREST_T LIKE KBED-KBEAREST,
    AUX_KEINH LIKE KBED-KEINH,
    AUX_KAPBD LIKE KBED-KBEAREST,
    AUX_ARBPL LIKE MKAL-MDV01,
    AUX_ARBID LIKE CRHD-OBJID,
    AUX_QUALF LIKE CRHD-QUALF,
    AUX_SAT1800 LIKE SY-UZEIT VALUE '180000'.
    S E L E C T I O N S C R E E N *
    INPUT SELECTION
    SELECTION-SCREEN : BEGIN OF BLOCK BL0 WITH FRAME TITLE TEXT-000.
    SELECT-OPTIONS : SO_PRVBE FOR PVBE-PRVBE,
    SO_MATNR FOR MARA-MATNR,
    SO_ZZPTG FOR MARC-ZZPTG OBLIGATORY,
    SO_WERKS FOR MARC-WERKS OBLIGATORY,
    SO_BUDAT FOR MKPF-BUDAT OBLIGATORY.
    SELECTION-SCREEN : END OF BLOCK BL0.
    I N I T I A L I Z A T I O N *
    INITIALIZATION.
    MOVE SY-DATUM TO AUX_CURRENT.
    AUX_PREVIOUS = AUX_CURRENT - 1.
    MOVE SY-DATUM TO SO_BUDAT-LOW.
    MOVE '01' TO SO_BUDAT-LOW+6(2).
    APPEND SO_BUDAT.
    AUX_PREVIOUS = AUX_CURRENT - 1.
    A T S E L E C T I O N - S C R E E N *
    AT SELECTION-SCREEN.
    CHECK ON SELECTION SCREEN
    PERFORM CHECK_ON_SELECTION.
    S T A R T O F S E L E C T I O N *
    START-OF-SELECTION.
    CHECK IF BOM EXISTS FOR THE COMPONENTS
    PERFORM CHECK_BOM_EXISTENCE.
    GET FINISHED PRODUCT NUMBER FOR THE SUBASSEMBLIES
    IF NOT IT_MARC_ZTGRP[] IS INITIAL.
    LOOP AT IT_MARC_ZTGRP.
    PERFORM GET_HEADER_MATERIAL USING IT_MARC_ZTGRP-MATNR.
    IF NOT IT_MAT[] IS INITIAL.
    PERFORM GET_FINISHED_GOOD TABLES IT_MAT.
    ENDIF.
    CLEAR IT_MARC_ZTGRP.
    ENDLOOP.
    ELSE.
    MESSAGE S010 WITH 'No data present for given selection'.
    ENDIF.
    CHECK IF SALES DATA EXIST FOR THE FINISHED GOOD
    PERFORM CHECK_SALESDATA_EXISTENCE.
    GET CONTROL CYCLE AND KANBAN DATA
    PERFORM GET_KANBAN_DATA.
    GET VALUATION AREA DATA
    PERFORM GET_VALUATION_AREA.
    GET MATERIAL DOCUMENT DATA
    PERFORM GET_MATERIAL_DOC_DATA.
    GET KANBAN DETAILS
    PERFORM GET_KANBAN_DETAILS.
    E N D O F S E L E C T I O N *
    END-OF-SELECTION.
    IF NOT IT_TEMP[] IS INITIAL.
    DISPLAY OUTPUT
    PERFORM DISPLAY_OUTPUT.
    ENDIF.
    *& Form CHECK_ON_SELECTION
    text
    --> p1 text
    <-- p2 text
    FORM CHECK_ON_SELECTION .
    CHECK IF ENTERED PLANT IS VALID
    IF NOT SO_WERKS-LOW IS INITIAL AND SO_WERKS-HIGH IS INITIAL.
    SELECT SINGLE * FROM MARC WHERE WERKS EQ SO_WERKS-LOW.
    IF SY-SUBRC NE 0.
    SET CURSOR FIELD 'SO_WERKS-LOW'.
    MESSAGE E010 WITH 'Please enter a valid Plant'.
    ENDIF.
    ENDIF.
    CHECK IF SUPPLY AREA AND PLANT IS VALID
    IF NOT SO_PRVBE-LOW IS INITIAL AND SO_PRVBE-HIGH IS INITIAL.
    IF NOT SO_WERKS IS INITIAL AND SO_WERKS-HIGH IS INITIAL.
    SELECT SINGLE * FROM PVBE WHERE WERKS EQ SO_WERKS-LOW
    AND PRVBE EQ SO_PRVBE-LOW.
    IF SY-SUBRC NE 0.
    SET CURSOR FIELD 'SO_PRVBE-LOW'.
    MESSAGE E010 WITH 'Supply Area' SO_PRVBE-LOW 'donot belong to'
    SO_WERKS-LOW.
    ENDIF.
    ENDIF.
    ENDIF.
    CHECK IF ENTERED MATERIAL NUMBER IS VALID
    IF NOT SO_MATNR-LOW IS INITIAL AND SO_MATNR-HIGH IS INITIAL.
    SELECT SINGLE * FROM MARA WHERE MATNR EQ SO_MATNR-LOW.
    IF SY-SUBRC NE 0.
    SET CURSOR FIELD 'SO_MATNR-LOW'.
    MESSAGE E010 WITH 'Please enter a valid Material Number'.
    ELSE.
    IF NOT SO_WERKS-LOW IS INITIAL AND SO_WERKS-HIGH IS INITIAL.
    SELECT SINGLE * FROM MARC WHERE MATNR EQ SO_MATNR-LOW
    AND WERKS EQ SO_WERKS-LOW.
    IF SY-SUBRC NE 0.
    SET CURSOR FIELD 'SO_MATNR-LOW'.
    MESSAGE E010 WITH 'Material' SO_MATNR-LOW
    'doesnot belong to plant' SO_WERKS-LOW.
    ENDIF.
    ENDIF.
    ENDIF.
    ENDIF.
    CHECK IF TECHNOLOGY GROUP AND PLANT IS VALID
    IF NOT SO_ZZPTG-LOW IS INITIAL AND SO_ZZPTG-HIGH IS INITIAL.
    IF NOT SO_WERKS-LOW IS INITIAL AND SO_WERKS-HIGH IS INITIAL.
    SELECT SINGLE * FROM MARC WHERE WERKS EQ SO_WERKS-LOW
    AND ZZPTG EQ SO_ZZPTG-LOW.
    IF SY-SUBRC NE 0.
    SET CURSOR FIELD 'SO_ZZPTG-LOW'.
    MESSAGE E010 WITH 'Tech.Group' SO_ZZPTG-LOW 'doesnot belong to plant'
    SO_WERKS-LOW.
    ENDIF.
    ENDIF.
    ENDIF.
    ENDFORM. " CHECK_ON_SELECTION
    *& Form CHECK_BOM_EXISTENCE
    text
    --> p1 text
    <-- p2 text
    FORM CHECK_BOM_EXISTENCE .
    JOIN MARC AND ZTGRP TABLES TO GET THE COMPONENTS BASED ON THE INPUT
    CRITERIA
    REFRESH IT_MARC_ZTGRP.
    SELECT MARCMATNR MARCWERKS ZTGRPZZPTG ZTGRPZZPTD
    INTO TABLE IT_MARC_ZTGRP
    FROM MARC INNER JOIN ZTGRP
    ON MARCWERKS EQ ZTGRPWERKS AND
    MARCZZPTG EQ ZTGRPZZPTG
    WHERE MARC~WERKS IN SO_WERKS
    AND MARC~ZZPTG IN SO_ZZPTG
    AND MARC~MATNR IN SO_MATNR
    AND MARC~LVORM NE 'X'
    AND ( MARC~BESKZ EQ 'E' OR
    MARC~BESKZ EQ 'X' ).
    IF NOT IT_MARC_ZTGRP[] IS INITIAL.
    CHECK THE EXISTENCE OF BOM FOR THE SELECTED COMPONENTS.
    IF NOT PRESENT, DELETE THE ENTRY FROM INTERNAL TABLE
    LOOP AT IT_MARC_ZTGRP.
    REFRESH IT_RETURN.
    CALL FUNCTION 'BAPI_MAT_BOM_EXISTENCE_CHECK'
    EXPORTING
    MATERIAL = IT_MARC_ZTGRP-MATNR
    PLANT = IT_MARC_ZTGRP-WERKS
    BOMUSAGE = '1'
    TABLES
    RETURN = IT_RETURN.
    IF NOT IT_RETURN[] IS INITIAL.
    DELETE IT_MARC_ZTGRP WHERE MATNR EQ IT_MARC_ZTGRP-MATNR
    AND WERKS EQ IT_MARC_ZTGRP-WERKS
    AND ZZPTG EQ IT_MARC_ZTGRP-ZZPTG.
    ENDIF.
    CLEAR IT_MARC_ZTGRP.
    ENDLOOP.
    ELSE.
    MESSAGE S010 WITH 'No data present for given selection'.
    ENDIF.
    ENDFORM. " CHECK_BOM_EXISTENCE
    *& Form GET_HEADER_MATERIAL
    text
    -->P_IT_MARC_ZTGRP_MATNR text
    FORM GET_HEADER_MATERIAL USING P_MATNR.
    REFRESH IT_STPO.
    GET BOM ITEM DATA FOR THE COMPONENT
    SELECT * FROM STPO INTO TABLE IT_STPO WHERE IDNRK EQ P_MATNR
    AND DATUV LE SO_BUDAT-LOW
    AND LKENZ NE 'X'.
    IF NOT IT_STPO[] IS INITIAL.
    IF BOM ITEM DATA IS PRESENT FOR THE COMPONENT
    REFRESH IT_MAST.
    GET MATERIAL TO BOM LINK
    SELECT * FROM MAST INTO TABLE IT_MAST FOR ALL ENTRIES IN IT_STPO
    WHERE STLNR EQ IT_STPO-STLNR.
    IF NOT IT_MAST[] IS INITIAL.
    SORT IT_MAST BY MATNR.
    DELETE ADJACENT DUPLICATES FROM IT_MAST COMPARING MATNR.
    LOOP AT IT_MAST.
    CLEAR AUX_SET.
    REFRESH IT_PLANT.
    GET ALL THE PLANTS FOR THE COMPONENT
    SELECT MATNR WERKS FROM MARC INTO TABLE IT_PLANT
    WHERE MATNR EQ IT_MAST-MATNR.
    LOOP AT IT_PLANT.
    REFRESH IT_RETURN.
    CHECK FOR BOM EXISTENCE FOR MATERIAL IN ALL PLANTS
    CALL FUNCTION 'BAPI_MAT_BOM_EXISTENCE_CHECK'
    EXPORTING
    MATERIAL = IT_MAST-MATNR
    PLANT = IT_PLANT-WERKS
    BOMUSAGE = '1'
    TABLES
    RETURN = IT_RETURN.
    IF IT_RETURN[] IS INITIAL.
    MOVE 'X' TO AUX_SET.
    ENDIF.
    CLEAR IT_PLANT.
    ENDLOOP.
    IF BOM EXISTS FOR THE COMPONENT IN ANY PLANT, MOVE THE COMPONENT
    TO INTERNAL TABLE IT_MAT
    IF AUX_SET EQ 'X'.
    MOVE IT_MAST-MATNR TO IT_MAT-MATNR.
    APPEND IT_MAT.
    CLEAR IT_MAT.
    ELSE.
    IF BOM DOESNOT EXISTS FOR THE COMPONENT IN ALL PLANTS,
    SELECT THE COMPONENT AS THE FINISHED PRODUCT
    CLEAR MARA.
    SELECT SINGLE * FROM MARA WHERE MATNR EQ IT_MAST-MATNR.
    IF SY-SUBRC EQ 0 AND MARA-LVORM NE 'X'.
    MOVE: IT_MARC_ZTGRP-MATNR TO IT_MATERIAL-IDNRK,
    IT_MAST-MATNR TO IT_MATERIAL-MATNR.
    APPEND IT_MATERIAL.
    CLEAR IT_MATERIAL.
    ENDIF.
    ENDIF.
    CLEAR IT_MAST.
    ENDLOOP.
    ENDIF.
    ELSE.
    IF BOM ITEM DATA DOESNOT PRESENT FOR THE COMPONENT,
    CONSIDER THE COMPONENT AS FINISHED PRODUCT
    CLEAR MARA.
    SELECT SINGLE * FROM MARA WHERE MATNR EQ P_MATNR.
    IF SY-SUBRC EQ 0 AND MARA-LVORM NE 'X'.
    MOVE: IT_MARC_ZTGRP-MATNR TO IT_MATERIAL-IDNRK,
    P_MATNR TO IT_MATERIAL-MATNR.
    APPEND IT_MATERIAL.
    CLEAR IT_MATERIAL.
    ENDIF.
    ENDIF.
    ENDFORM. " GET_HEADER_MATERIAL
    *& Form GET_FINISHED_GOOD
    text
    -->P_IT_MAT text
    FORM GET_FINISHED_GOOD TABLES P_IT_MAT LIKE IT_MAT[].
    LOOP AT P_IT_MAT.
    PERFORM GET_HEADER_MATERIAL USING P_IT_MAT-MATNR.
    DELETE P_IT_MAT INDEX 1.
    CLEAR P_IT_MAT.
    ENDLOOP.
    ENDFORM. " GET_FINISHED_GOOD
    *& Form CHECK_SALESDATA_EXISTENCE
    text
    --> p1 text
    <-- p2 text
    FORM CHECK_SALESDATA_EXISTENCE .
    IF NOT IT_MATERIAL[] IS INITIAL.
    LOOP AT IT_MATERIAL.
    CLEAR VBAP.
    SELECT SINGLE * FROM VBAP WHERE MATNR EQ IT_MATERIAL-MATNR.
    IF SY-SUBRC NE 0.
    DELETE IT_MATERIAL WHERE IDNRK EQ IT_MATERIAL-IDNRK
    AND MATNR EQ IT_MATERIAL-MATNR.
    ENDIF.
    CLEAR IT_MATERIAL.
    ENDLOOP.
    ENDIF.
    ENDFORM. " CHECK_SALESDATA_EXISTENCE
    *& Form GET_KANBAN_DATA
    text
    --> p1 text
    <-- p2 text
    FORM GET_KANBAN_DATA.
    SORT IT_MATERIAL BY IDNRK MATNR.
    DELETE ADJACENT DUPLICATES FROM IT_MATERIAL COMPARING ALL FIELDS.
    IF NOT IT_MATERIAL[] IS INITIAL.
    GET CONTROL CYCLE HEADER DATA
    SELECT * FROM PKHD INTO TABLE IT_PKHD
    FOR ALL ENTRIES IN IT_MATERIAL
    WHERE WERKS IN SO_WERKS
    AND MATNR EQ IT_MATERIAL-IDNRK
    AND PRVBE IN SO_PRVBE.
    IF NOT IT_PKHD[] IS INITIAL.
    GET CONTROL CYCLE ITEM DATA
    SELECT * FROM PKPS INTO TABLE IT_PKPS
    FOR ALL ENTRIES IN IT_PKHD
    WHERE PKNUM EQ IT_PKHD-PKNUM.
    IF NOT IT_PKPS[] IS INITIAL.
    GET KANBAN STATUS DATA
    SELECT * FROM ZZC10 INTO TABLE IT_ZZC10_TEMP
    FOR ALL ENTRIES IN IT_PKPS
    WHERE PKKEY EQ IT_PKPS-PKKEY
    AND PKNUM EQ IT_PKPS-PKNUM
    AND ZDATE BETWEEN SO_BUDAT-LOW AND SY-DATUM
    AND STATUS EQ '5'.
    ENDIF.
    ENDIF.
    ENDIF.
    ENDFORM. " GET_KANBAN_DATA
    *& Form GET_VALUATION_AREA
    text
    --> p1 text
    <-- p2 text
    FORM GET_VALUATION_AREA.
    IF NOT IT_MARC_ZTGRP[] IS INITIAL.
    SELECT WERKS BWKEY FABKL FROM T001W INTO TABLE IT_T001W
    FOR ALL ENTRIES IN IT_MARC_ZTGRP
    WHERE WERKS EQ IT_MARC_ZTGRP-WERKS.
    ENDIF.
    ENDFORM. " GET_VALUATION_AREA
    *& Form GET_MATERIAL_DOC_DATA
    text
    --> p1 text
    <-- p2 text
    FORM GET_MATERIAL_DOC_DATA.
    GET MATERIAL DOCUMENT HEADER DATA
    SELECT * FROM MKPF INTO TABLE IT_MKPF
    WHERE BUDAT IN SO_BUDAT.
    IF NOT IT_MKPF[] IS INITIAL.
    GET MATERIAL DOCUMENT ITEM DATA
    SELECT * FROM MSEG INTO TABLE IT_MSEG
    FOR ALL ENTRIES IN IT_MKPF
    WHERE MBLNR EQ IT_MKPF-MBLNR
    AND WERKS IN SO_WERKS
    AND MJAHR EQ SY-DATUM+0(4)
    AND ( BWART EQ '131' OR BWART EQ '132' ).
    IF NOT IT_MATERIAL[] IS INITIAL.
    LOOP AT IT_MSEG.
    READ TABLE IT_MATERIAL WITH KEY IDNRK = IT_MSEG-MATNR.
    IF SY-SUBRC NE 0.
    DELETE IT_MSEG WHERE MATNR EQ IT_MSEG-MATNR.
    ENDIF.
    CLEAR: IT_MATERIAL, IT_MSEG.
    ENDLOOP.
    ENDIF.
    ENDIF.
    ENDFORM. " GET_MATERIAL_DOC_DATA
    *& Form GET_KANBAN_DETAILS
    text
    --> p1 text
    <-- p2 text
    FORM GET_KANBAN_DETAILS .
    SORT IT_PKHD BY PKNUM.
    IF NOT IT_ZZC10_TEMP[] IS INITIAL.
    LOOP AT IT_ZZC10_TEMP.
    CLEAR: AUX_FILL, AUX_PKBMG.
    MOVE IT_ZZC10_TEMP] TO IT_ZZC10[.
    DELETE IT_ZZC10 WHERE MATNR NE IT_ZZC10_TEMP-MATNR
    AND WERKS NE IT_ZZC10_TEMP-WERKS.
    LOOP AT IT_ZZC10.
    CLEAR: AUX_TIMESTAMP1, AUX_TIMESTAMP2, AUX_ZZC10_HR, AUX_DIFF.
    EMPTY DATE GREATER THAN FULL DATE
    IF IT_ZZC10-DATE_EMPTY GT IT_ZZC10-DATE_FULL.
    CONCATENATE IT_ZZC10-DATE_EMPTY IT_ZZC10-TIME_EMPTY
    INTO AUX_TIMESTAMP1.
    CONCATENATE IT_ZZC10-DATE_FULL IT_ZZC10-TIME_FULL
    INTO AUX_TIMESTAMP2.
    CALL FUNCTION 'CCU_TIMESTAMP_DIFFERENCE'
    EXPORTING
    TIMESTAMP1 = AUX_TIMESTAMP1
    TIMESTAMP2 = AUX_TIMESTAMP2
    IMPORTING
    DIFFERENCE = AUX_DIFF.
    AUX_ZZC10_HR = AUX_DIFF / 3600.
    FULL DATE GREATER THAN EMPTY DATE
    ELSEIF IT_ZZC10-DATE_FULL GT IT_ZZC10-DATE_EMPTY.
    CONCATENATE IT_ZZC10-DATE_EMPTY IT_ZZC10-TIME_EMPTY
    INTO AUX_TIMESTAMP2.
    CONCATENATE IT_ZZC10-DATE_FULL IT_ZZC10-TIME_FULL
    INTO AUX_TIMESTAMP1.
    CALL FUNCTION 'CCU_TIMESTAMP_DIFFERENCE'
    EXPORTING
    TIMESTAMP1 = AUX_TIMESTAMP1
    TIMESTAMP2 = AUX_TIMESTAMP2
    IMPORTING
    DIFFERENCE = AUX_DIFF.
    AUX_ZZC10_HR = AUX_DIFF / 3600.
    FULL DATE EQUAL TO EMPTY DATE
    ELSEIF IT_ZZC10-DATE_FULL EQ IT_ZZC10-DATE_EMPTY.
    EMPTY TIME GREATER THAN FULL TIME
    IF IT_ZZC10-TIME_EMPTY GT IT_ZZC10-TIME_FULL.
    CONCATENATE IT_ZZC10-DATE_EMPTY IT_ZZC10-TIME_EMPTY
    INTO AUX_TIMESTAMP1.
    CONCATENATE IT_ZZC10-DATE_FULL IT_ZZC10-TIME_FULL
    INTO AUX_TIMESTAMP2.
    CALL FUNCTION 'CCU_TIMESTAMP_DIFFERENCE'
    EXPORTING
    TIMESTAMP1 = AUX_TIMESTAMP1
    TIMESTAMP2 = AUX_TIMESTAMP2
    IMPORTING
    DIFFERENCE = AUX_DIFF.
    AUX_ZZC10_HR = AUX_DIFF / 3600.
    FULL TIME GREATER THAN EMPTY TIME
    ELSEIF IT_ZZC10-TIME_FULL GT IT_ZZC10-TIME_EMPTY.
    CONCATENATE IT_ZZC10-DATE_EMPTY IT_ZZC10-TIME_EMPTY
    INTO AUX_TIMESTAMP2.
    CONCATENATE IT_ZZC10-DATE_FULL IT_ZZC10-TIME_FULL
    INTO AUX_TIMESTAMP1.
    CALL FUNCTION 'CCU_TIMESTAMP_DIFFERENCE'
    EXPORTING
    TIMESTAMP1 = AUX_TIMESTAMP1
    TIMESTAMP2 = AUX_TIMESTAMP2
    IMPORTING
    DIFFERENCE = AUX_DIFF.
    AUX_ZZC10_HR = AUX_DIFF / 3600.
    FULL TIME EQUAL TO EMPTY TIME
    ELSEIF IT_ZZC10-TIME_FULL EQ IT_ZZC10-TIME_EMPTY.
    AUX_ZZC10_HR = 0.
    ENDIF.
    ENDIF.
    READ TABLE IT_PKHD WITH KEY PKNUM = IT_ZZC10-PKNUM
    BINARY SEARCH.
    IF SY-SUBRC EQ 0.
    CLEAR: AUX_TIMESTAMP1, AUX_TIMESTAMP2,
    AUX_PKHD_DAYS, AUX_PKHD_HOURS, AUX_TMP_DAYS,
    AUX_PKHD_TIME.
    AUX_PKHD_DAYS = IT_PKHD-KWBZD.
    AUX_PKHD_HOURS = IT_PKHD-KWBZM.
    IF AUX_PKHD_DAYS NE 0.
    AUX_TMP_DAYS = AUX_PKHD_DAYS * 24.
    AUX_PKHD_TIME = AUX_TMP_DAYS + AUX_PKHD_HOURS.
    ELSE.
    AUX_PKHD_TIME = AUX_PKHD_HOURS.
    ENDIF.
    COMPARE STATUS CHANGE TIME WITH REPLENISHMENT LEAD TIME
    IF AUX_ZZC10_HR GT AUX_PKHD_TIME.
    CLEAR: AUX_LATEHOURS.
    LATE HOURS
    AUX_LATEHOURS = AUX_ZZC10_HR - AUX_PKHD_TIME.
    LATE QUANTITY FOR +1 DAY
    IF AUX_LATEHOURS LE 24.
    IT_TEMP-QTY_1 = IT_TEMP-QTY_1 + IT_ZZC10-PKBMG.
    LATE QUANTITY FOR +2 DAYS
    ELSEIF AUX_LATEHOURS GT 24
    AND AUX_LATEHOURS LE 48.
    IT_TEMP-QTY_2 = IT_TEMP-QTY_2 + IT_ZZC10-PKBMG.
    LATE QUANTITY FOR +3 DAYS
    ELSEIF AUX_LATEHOURS GT 48
    AND AUX_LATEHOURS LE 72.
    IT_TEMP-QTY_3 = IT_TEMP-QTY_3 + IT_ZZC10-PKBMG.
    LATE QUANTITY FOR +4 DAYS
    ELSEIF AUX_LATEHOURS GT 72
    AND AUX_LATEHOURS LE 96.
    IT_TEMP-QTY_4 = IT_TEMP-QTY_4 + IT_ZZC10-PKBMG.
    LATE QUANTITY FOR +5 DAYS
    ELSEIF AUX_LATEHOURS GT 96
    AND AUX_LATEHOURS LE 120.
    IT_TEMP-QTY_5 = IT_TEMP-QTY_5 + IT_ZZC10-PKBMG.
    LATE QUANTITY FOR MORE THAN 5 DAYS
    ELSEIF AUX_LATEHOURS GT 120.
    IT_TEMP-QTY_6 = IT_TEMP-QTY_6 + IT_ZZC10-PKBMG.
    ENDIF.
    TOTAL KANBAN LATE QUANTITIES
    AUX_PKBMG = AUX_PKBMG + IT_ZZC10-PKBMG.
    ELSE.
    AUX_FILL = AUX_FILL + IT_ZZC10-PKBMG.
    CONTINUE.
    ENDIF.
    ENDIF.
    ENDLOOP.
    SUBASSEMBLY PART NUMBER
    IT_TEMP-MATNR = IT_ZZC10-MATNR.
    FINISHED GOOD
    READ TABLE IT_MATERIAL WITH KEY IDNRK = IT_ZZC10-MATNR.
    IT_TEMP-FINISHED = IT_MATERIAL-MATNR.
    TECHNOLOGY GROUP
    READ TABLE IT_MARC_ZTGRP WITH KEY WERKS = IT_ZZC10-WERKS
    MATNR = IT_ZZC10-MATNR.
    IF SY-SUBRC EQ 0.
    MOVE IT_MARC_ZTGRP-ZZPTD TO IT_TEMP-TECH.
    ENDIF.
    NUMBER OF KANBAN CONTAINERS
    IT_TEMP-BEHAZ = IT_PKHD-BEHAZ.
    KANBAN QUANTITY
    IT_TEMP-BEHMG = IT_PKHD-BEHMG.
    LATE HOURS
    AUX_LATEHOURS = AUX_ZZC10_HR - AUX_PKHD_TIME.
    IT_TEMP-LATEHOURS = AUX_LATEHOURS.
    REPLENISHMENT LEAD TIME
    IT_TEMP-REPL_LEAD_TIME = AUX_PKHD_TIME.
    KANBAN LATE QUANTITIES
    IT_TEMP-GSMNG = AUX_PKBMG.
    FILL RATE
    AUX_TOTAL = AUX_PKBMG + AUX_FILL.
    IT_TEMP-FILLRATE = ( AUX_FILL / AUX_TOTAL ) * 100.
    GET STOCK IN PO01
    REFRESH IT_MARD.
    SELECT LABST FROM MARD INTO TABLE IT_MARD
    WHERE MATNR EQ IT_ZZC10-MATNR
    AND WERKS EQ IT_ZZC10-WERKS.
    IF SY-SUBRC EQ 0.
    LOOP AT IT_MARD.
    SUM.
    ENDLOOP.
    MOVE IT_MARD-LABST TO IT_TEMP-STOCK_PO01.
    CLEAR IT_MARD.
    ENDIF.
    GET YESTERDAY'S OUTPUT QUANTITY
    PERFORM GET_YESTERDAY_QTY.
    CUMULATIVE OUTPUT FOR ACTUAL MONTH
    PERFORM GET_CUMULATIVE_OUTPUT.
    GET BACKORDER SUBASSEMBLY DATA
    PERFORM GET_BACKORDER_QTY.
    GET BACKORDER FINISHED GOODS, TODAY, +1, +2, +3, +4, +5
    AND AVERAGE OUPTUT NEEDED DATA
    PERFORM GET_FINISHEDGOODS_DATA.
    GET DATA FOR ACTUAL MONTH DELIVERED
    PERFORM GET_ACTUAL_MONTH_DATA.
    APPEND IT_TEMP.
    CLEAR IT_TEMP.
    DELETE IT_ZZC10_TEMP WHERE MATNR EQ IT_ZZC10_TEMP-MATNR
    AND WERKS EQ IT_ZZC10_TEMP-WERKS.
    CLEAR: IT_ZZC10, IT_ZZC10_TEMP, IT_PKHD.
    ENDLOOP.
    ENDIF.
    ENDFORM. " GET_KANBAN_DETAILS
    *& Form GET_YESTERDAY_QTY
    text
    --> p1 text
    <-- p2 text
    FORM GET_YESTERDAY_QTY .
    CLEAR: AUX_BUKRS, AUX_WAERS.
    READ TABLE IT_T001W WITH KEY WERKS = IT_PKHD-WERKS.
    IF SY-SUBRC EQ 0.
    CLEAR AUX_FABKL.
    MOVE IT_T001W-FABKL TO AUX_FABKL.
    SELECT SINGLE BUKRS INTO AUX_BUKRS FROM T001K
    WHERE BWKEY = IT_T001W-BWKEY.
    IF SY-SUBRC EQ 0.
    SELECT SINGLE WAERS INTO AUX_WAERS FROM T001
    WHERE BUKRS = AUX_BUKRS.
    ENDIF.
    IF 'WD;WF;WN;WP;WU' CS AUX_FABKL.
    AUX_FABKL(1) = 'P'.
    ENDIF.
    MOVE SY-DATUM TO AUX_DATUMABSOLUT.
    PERFORM WEEKDAY USING AUX_DATUMABSOLUT.
    MOVE 'W' TO AUX_FLAG.
    PERFORM CHECK_WORKING_DAY CHANGING AUX_FLAG.
    IF AUX_DATUMABSOLUT = 0.
    AUX_YDAY = SY-DATUM.
    ELSEIF AUX_DATUMABSOLUT = 1.
    AUX_YDAY = SY-DATUM - 1.
    ELSEIF AUX_FLAG = 'F'.
    AUX_YDAY = SY-DATUM.
    ENDIF.
    IF AUX_DATUMABSOLUT = 0 OR
    AUX_DATUMABSOLUT = 1 OR
    AUX_FLAG = 'F'.
    PERFORM DATE_WITH_OFFSET USING 0 CHANGING AUX_TDAY.
    PERFORM DATE_WITH_OFFSET USING 1 CHANGING AUX_DAY1.
    PERFORM DATE_WITH_OFFSET USING 2 CHANGING AUX_DAY2.
    PERFORM DATE_WITH_OFFSET USING 3 CHANGING AUX_DAY3.
    PERFORM DATE_WITH_OFFSET USING 4 CHANGING AUX_DAY4.
    PERFORM DATE_WITH_OFFSET USING 5 CHANGING AUX_DAY5.
    ELSE.
    PERFORM DATE_WITH_OFFSET USING 0 CHANGING AUX_YDAY.
    PERFORM DATE_WITH_OFFSET USING 1 CHANGING AUX_TDAY.
    PERFORM DATE_WITH_OFFSET USING 2 CHANGING AUX_DAY1.
    PERFORM DATE_WITH_OFFSET USING 3 CHANGING AUX_DAY2.
    PERFORM DATE_WITH_OFFSET USING 4 CHANGING AUX_DAY3.
    PERFORM DATE_WITH_OFFSET USING 5 CHANGING AUX_DAY4.
    PERFORM DATE_WITH_OFFSET USING 6 CHANGING AUX_DAY5.
    ENDIF.
    AUX_BORD = '19000101'.
    GET PLANNED ORDER DATA FOR YESTERDAY
    REFRESH IT_PLAF.
    CLEAR: AUX_KAPBD, AUX_KBEAREST, AUX_KRUEREST, AUX_GSMNG.
    SELECT * FROM PLAF INTO TABLE IT_PLAF
    WHERE MATNR EQ IT_PKHD-MATNR
    AND PLWRK EQ IT_PKHD-WERKS
    AND ( PAART EQ 'KD' OR PAART EQ 'PE' )
    AND RATID GT 0
    AND PEDTR EQ AUX_YDAY.
    IF NOT IT_PLAF[] IS INITIAL.
    LOOP AT IT_PLAF.
    REFRESH IT_KBED_KAKO.
    SELECT KBED~KBEAREST KBED~KRUEREST KBED~KEINH
    FROM KBED INNER JOIN KAKO
    ON KBED~KAPID EQ KAKO~KAPID
    INTO TABLE IT_KBED_KAKO
    WHERE KBED~BEDID = IT_PLAF-RATID
    AND KAKO~KAPAR = '001'.
    IF NOT IT_KBED_KAKO[] IS INITIAL.
    LOOP AT IT_KBED_KAKO.
    IF IT_KBED_KAKO-KEINH NE 'STD'.
    CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'
    EXPORTING
    INPUT = IT_KBED_KAKO-KBEAREST
    UNIT_IN = IT_KBED_KAKO-KEINH
    UNIT_OUT = 'STD'
    IMPORTING
    OUTPUT = IT_KBED_KAKO-KBEAREST.
    CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'
    EXPORTING
    INPUT = IT_KBED_KAKO-KRUEREST
    UNIT_IN = IT_KBED_KAKO-KEINH
    UNIT_OUT = 'STD'
    IMPORTING
    OUTPUT = IT_KBED_KAKO-KRUEREST.
    ENDIF.
    ADD IT_KBED_KAKO-KBEAREST TO AUX_KBEAREST.
    ADD IT_KBED_KAKO-KRUEREST TO AUX_KRUEREST.
    CLEAR IT_KBED_KAKO.
    ENDLOOP.
    AUX_KAPBD = AUX_KBEAREST + AUX_KRUEREST.
    ENDIF.
    CLEAR IT_PLAF.
    ENDLOOP.
    ENDIF.
    READ TABLE IT_KBED_KAKO INDEX 1.
    MOVE: AUX_KAPBD TO IT_TEMP-KAPBD_OUTY,
    IT_KBED_KAKO-KEINH TO IT_TEMP-KEINH_OUTY.
    GET OUTPUT QUANTITY FOR YESTERDAY
    REFRESH: IT_MKPF, IT_MSEG.
    CLEAR: AUX_MENGE.
    SELECT * FROM MKPF INTO TABLE IT_MKPF
    WHERE BUDAT EQ AUX_PREVIOUS.
    IF NOT IT_MKPF[] IS INITIAL.
    GET MATERIAL DOCUMENT ITEM DATA
    SELECT * FROM MSEG INTO TABLE IT_MSEG
    FOR ALL ENTRIES IN IT_MKPF
    WHERE MBLNR EQ IT_MKPF-MBLNR
    AND MATNR IN SO_MATNR
    AND WERKS IN SO_WERKS
    AND MJAHR EQ SY-DATUM+0(4)
    AND ( BWART EQ '131' OR BWART EQ '132' ).
    IF NOT IT_MSEG[] IS INITIAL.
    LOOP AT IT_MSEG.
    AUX_MENGE = AUX_MENGE + IT_MSEG-MENGE.
    CLEAR IT_MSEG.
    ENDLOOP.
    ENDIF.
    ENDIF.
    READ TABLE IT_MSEG INDEX 1.
    MOVE: AUX_MENGE TO IT_TEMP-GSMNG_OUTY,
    IT_MSEG-MEINS TO IT_TEMP-MEINS_OUTY.
    CLEAR IT_T001W.
    ENDIF.
    ENDFORM. " GET_YESTERDAY_QTY
    *& Form GET_BACKORDER_QTY
    text
    --> p1 text
    <-- p2 text
    FORM GET_BACKORDER_QTY .
    GET PLANNED ORDER DATA FOR BACKORDER
    REFRESH IT_PLAF.
    CLEAR: AUX_KAPBD, AUX_KBEAREST, AUX_KRUEREST, AUX_GSMNG, AUX_QUANT.
    SELECT * FROM PLAF INTO TABLE IT_PLAF
    WHERE MATNR EQ IT_ZZC10-MATNR
    AND PLWRK EQ IT_ZZC10-WERKS
    AND ( PAART EQ 'KD' OR PAART EQ 'PE' )
    AND RATID GT 0
    AND PEDTR GE SO_BUDAT-LOW
    AND PEDTR LE SY-DATUM.
    IF NOT IT_PLAF[] IS INITIAL.
    LOOP AT IT_PLAF.
    CLEAR: AUX_TIMESTAMP1, AUX_TIMESTAMP2, AUX_PLAF_HR, AUX_DIFF.
    EMPTY DATE GREATER THAN FULL DATE
    CONCATENATE SY-DATUM SY-UZEIT
    INTO AUX_TIMESTAMP1.
    CONCATENATE IT_PLAF-PEDTR IT_PLAF-PEDTI
    INTO AUX_TIMESTAMP2.
    CALL FUNCTION 'CCU_TIMESTAMP_DIFFERENCE'
    EXPORTING
    TIMESTAMP1 = AUX_TIMESTAMP1
    TIMESTAMP2 = AUX_TIMESTAMP2
    IMPORTING
    DIFFERENCE = AUX_DIFF.
    AUX_PLAF_HR = AUX_DIFF / 3600.
    IF AUX_PLAF_HR > AUX_PKHD_TIME.
    AUX_GSMNG = AUX_GSMNG + IT_PLAF-GSMNG.
    REFRESH IT_KBED_KAKO.
    SELECT KBEDKBEAREST KBEDKRUEREST KBED~KEINH
    FROM KBED INNER JOIN KAKO
    ON KBEDKAPID EQ KAKOKAPID
    INTO TABLE IT_KBED_KAKO
    WHERE KBED~BEDID = IT_PLAF-RATID
    AND KAKO~KAPAR = '001'.
    IF NOT IT_KBED_KAKO[] IS INITIAL.
    LOOP AT IT_KBED_KAKO.
    IF IT_KBED_KAKO-KEINH NE 'STD'.
    CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'
    EXPORTING
    INPUT = IT_KBED_KAKO-KBEAREST
    UNIT_IN = IT_KBED_KAKO-KEINH
    UNIT_OUT = 'STD'
    IMPORTING
    OUTPUT = IT_KBED_KAKO-KBEAREST.
    CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'
    EXPORTING
    INPUT = IT_KBED_KAKO-KRUEREST
    UNIT_IN = IT_KBED_KAKO-KEINH
    UNIT_OUT = 'STD'
    IMPORTING
    OUTPUT = IT_KBED_KAKO-KRUEREST.
    ENDIF.
    AUX_KBEAREST = AUX_KBEAREST + IT_KBED_KAKO-KBEAREST.
    AUX_KRUEREST = AUX_KRUEREST + IT_KBED_KAKO-KRUEREST.
    CLEAR IT_KBED_KAKO.
    ENDLOOP.
    AUX_KAPBD = AUX_KBEAREST + AUX_KRUEREST.
    ENDIF.
    ENDIF.
    ENDLOOP.
    READ TABLE IT_PLAF INDEX 1.
    MOVE: AUX_GSMNG TO IT_TEMP-GSMNG_BORD,
    IT_PLAF-MEINS TO IT_TEMP-MEINS_BORD.
    READ TABLE IT_KBED_KAKO INDEX 1.
    MOVE: AUX_KAPBD TO IT_TEMP-KAPBD_BORD,
    IT_KBED_KAKO-KEINH TO IT_TEMP-KEINH_BORD.
    ENDIF.
    ENDFORM. " GET_BACKORDER_QTY
    *& Form WEEKDAY
    text
    -->P_AUX_DATUMABSOLUT text
    FORM WEEKDAY USING P_DATUMABSOLUT.
    P_DATUMABSOLUT = P_DATUMABSOLUT MOD 7.
    ENDFORM. " WEEKDAY
    *& Form CHECK_WORKING_DAY
    text
    <--P_AUX_FLAG text
    FORM CHECK_WORKING_DAY CHANGING P_FLAG.
    CALL FUNCTION 'DATE_CONVERT_TO_FACTORYDATE'
    EXPORTING
    DATE = SY-DATUM
    FACTORY_CALENDAR_ID = AUX_FABKL
    IMPORTING
    DATE = AUX_FDAY
    EXCEPTIONS
    CALENDAR_BUFFER_NOT_LOADABLE = 1
    CORRECT_OPTION_INVALID = 2
    DATE_AFTER_RANGE = 3
    DATE_BEFORE_RANGE = 4
    DATE_INVALID = 5
    FACTORY_CALENDAR_NOT_FOUND = 6
    OTHERS = 7.
    IF AUX_FDAY NE SY-DATUM.
    AUX_FLAG = 'F'.
    ENDIF.
    ENDFORM. " CHECK_WORKING_DAY
    *& Form DATE_WITH_OFFSET
    text
    -->P_0 text
    <--P_AUX_TDAY text
    FORM DATE_WITH_OFFSET USING AUX_OFFSET
    CHANGING P_TDAY.
    DATA:
    AUX_CALENDARDATE LIKE SCAL-DATE,
    AUX_FACTORYDATE LIKE SCAL-FACDATE.
    CALL FUNCTION 'DATE_CONVERT_TO_FACTORYDATE'
    EXPORTING
    DATE = SY-DATUM
    FACTORY_CALENDAR_ID = AUX_FABKL
    IMPORTING
    FACTORYDATE = AUX_FACTORYDATE
    EXCEPTIONS
    CALENDAR_BUFFER_NOT_LOADABLE = 1
    CORRECT_OPTION_INVALID = 2
    DATE_AFTER_RANGE = 3
    DATE_BEFORE_RANGE = 4
    DATE_INVALID = 5
    FACTORY_CALENDAR_NOT_FOUND = 6
    OTHERS = 7.
    AUX_FACTORYDATE = AUX_FACTORYDATE + AUX_OFFSET.
    CALL FUNCTION 'FACTORYDATE_CONVERT_TO_DATE'
    EXPORTING
    FACTORYDATE = AUX_FACTORYDATE
    FACTORY_CALENDAR_ID = AUX_FABKL
    IMPORTING
    DATE = AUX_CALENDARDATE
    EXCEPTIONS
    CALENDAR_BUFFER_NOT_LOADABLE = 1
    FACTORYDATE_AFTER_RANGE = 2
    FACTORYDATE_BEFORE_RANGE = 3
    FACTORYDATE_INVALID = 4
    FACTORY_CALENDAR_ID_MISSING = 5
    FACTORY_CALENDAR_NOT_FOUND = 6
    OTHERS = 7.
    P_TDAY = AUX_CALENDARDATE.
    ENDFORM. " DATE_WITH_OFFSET
    *& Form GET_CUMULATIVE_OUTPUT
    text
    --> p1 text
    <-- p2 text
    FORM GET_CUMULATIVE_OUTPUT .
    CLEAR: AUX_LOW, AUX_HIGH.
    MOVE: SY-DATUM TO AUX_LOW,
    SY-DATUM TO AUX_HIGH.
    MOVE: '01' TO AUX_LOW+6(2),
    '31' TO AUX_HIGH+6(2).
    REFRESH IT_MKPF_MSEG.
    CLEAR AUX_MNG.
    SELECT MKPFMBLNR MKPFMJAHR MKPF~BUDAT
    MSEGBWART MSEGMATNR MSEGMENGE MSEGMEINS MSEGDMBTR MSEGWERKS
    INTO TABLE IT_MKPF_MSEG
    FROM MKPF JOIN MSEG
    ON MKPFMBLNR EQ MSEGMBLNR
    WHERE MKPF~BUDAT BETWEEN AUX_LOW AND AUX_HIGH
    AND MKPF~MJAHR EQ AUX_CURRENT+0(4)
    AND MKPF~VGART EQ 'WS'
    AND MSEG~ZEILE EQ 1
    AND MSEG~WERKS EQ SO_WERKS
    AND MSEG~MATNR EQ IT_PKHD-MATNR
    AND MSEG~BWART IN ('131', '132').
    IF NOT IT_MKPF_MSEG[] IS INITIAL.
    LOOP AT IT_MKPF_MSEG.
    AUX_MNG = AUX_MNG + IT_MKPF_MSEG-MENGE.
    CLEAR IT_MKPF_MSEG.
    ENDLOOP.
    ENDIF.
    MOVE AUX_MNG TO IT_TEMP-GSMNG_OUTM.
    READ TABLE IT_MKPF_MSEG INDEX 1.
    MOVE IT_MKPF_MSEG-MEINS TO IT_TEMP-MEINS_OUTM.
    REFRESH IT_COBK.
    SELECT DISTINCT BLPP~RUECK FROM BLPK INNER JOIN BLPP
    ON BLPKPRTNR EQ BLPPPRTNR
    INTO TABLE IT_COBK
    WHERE BLPK~WERKS EQ SO_WERKS
    AND BLPK~MATNR EQ SO_MATNR
    AND BLPK~DATUM BETWEEN AUX_LOW
    AND AUX_HIGH
    AND BLPP~PRTPS EQ '0002'.
    IF NOT IT_COBK[] IS INITIAL.
    REFRESH IT_COEPL.
    SELECT KOKRS BELNR FROM COBK
    INTO CORRESPONDING FIELDS OF TABLE IT_COEPL
    FOR ALL ENTRIES IN IT_COBK
    WHERE REFBT EQ 'R'
    AND REFBN EQ IT_COBK-RUECK
    AND BLDAT BETWEEN AUX_LOW AND AUX_HIGH.
    CLEAR IT_CAPACITIES.
    REFRESH IT_CAPACITIES.
    LOOP AT IT_COEPL.
    SELECT LSBBTR MEINB FROM COEPL
    APPENDING CORRESPONDING FIELDS OF TABLE IT_CAPACITIES
    WHERE KOKRS EQ IT_COEPL-KOKRS
    AND BELNR EQ IT_COEPL-BELNR
    AND OBJNR LIKE '%DLABOR'.
    CALL FUNCTION 'UNIT_SUM'
    IMPORTING
    QUANTITY_SUM = IT_TEMP-KAPBD_OUTM
    UNIT_SUM = AUX_SUM_UNIT
    TABLES
    QUANTITIES_UNITS = IT_CAPACITIES.
    CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'
    EXPORTING
    INPUT = IT_TEMP-KAPBD_OUTM
    UNIT_IN = AUX_SUM_UNIT
    UNIT_OUT = 'STD'
    IMPORTING
    OUTPUT = IT_TEMP-KAPBD_OUTM.
    ENDLOOP.
    READ TABLE IT_CAPACITIES INDEX 1.
    MOVE IT_CAPACITIES-MEINB TO IT_TEMP-KEINH_OUTM.
    ENDIF.
    ENDFORM. " GET_CUMULATIVE_OUTPUT
    *& Form GET_FINISHEDGOODS_DATA
    text
    --> p1 text
    <-- p2 text
    FORM GET_FINISHEDGOODS_DATA .
    GET PLANNED ORDER DATA
    REFRESH IT_PLAF.
    CLEAR: AUX_KAPBD, AUX_KBEAREST, AUX_KRUEREST, AUX_GSMNG.
    SELECT * FROM PLAF INTO TABLE IT_PLAF
    WHERE MATNR EQ IT_TEMP-FINISHED
    AND ( PAART EQ 'KD' OR PAART EQ 'PE' )
    AND RATID GT 0
    AND PEDTR GE AUX_BORD
    AND PEDTR LE AUX_DAY5.
    IF NOT IT_PLAF[] IS INITIAL.
    LOOP AT IT_PLAF.
    CLEAR: AUX_KAPBD, AUX_GSMNG.
    REFRESH IT_KBED_KAKO.
    SELECT KBEDKBEAREST KBEDKRUEREST KBED~KEINH
    FROM KBED INNER JOIN KAKO
    ON KBEDKAPID EQ KAKOKAPID
    INTO TABLE IT_KBED_KAKO
    WHERE KBED~BEDID = IT_PLAF-RATID
    AND KAKO~KAPAR = '001'.
    IF NOT IT_KBED_KAKO[] IS INITIAL.
    CLEAR AUX_KAPBD.
    LOOP AT IT_KBED_KAKO.
    IF IT_KBED_KAKO-KEINH NE 'STD'.
    CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'
    EXPORTING
    INPUT = IT_KBED_KAKO-KBEAREST
    UNIT_IN = IT_KBED_KAKO-KEINH
    UNIT_OUT = 'STD'
    IMPORTING
    OUTPUT = IT_KBED_KAKO-KBEAREST.
    CALL FUNCTION 'UNIT_CONVERSION_SIMPLE'
    EXPORTING
    INPUT = IT_KBED_KAKO-KRUEREST
    UNIT_IN = IT_KBED_KAKO-KEINH
    UNIT_OUT = 'STD'
    IMPORTING
    OUTPUT = IT_KBED_KAKO-KRUEREST.
    ENDIF.
    ADD IT_KBED_KAKO-KBEAREST TO AUX_KBEAREST.
    ADD IT_KBED_KAKO-KRUEREST TO AUX_KRUEREST.
    CLEAR IT_KBED_KAKO.
    ENDLOOP.
    AUX_KAPBD = AUX_KBEAREST + AUX_KRUEREST.
    ENDIF.
    READ TABLE IT_KBED_KAKO INDEX 1.
    CASE IT_PLAF-PEDTR.
    WHEN AUX_DAY5.
    AUX_GSMNG = IT_PLAF-GSMNG.
    IT_TEMP-F_GSMNG_DAY5 = IT_TEMP-F_GSMNG_DAY5 + AUX_GSMNG.
    IT_TEMP-F_MEINS_DAY5 = IT_PLAF-MEINS.
    IT_TEMP-F_KAPBD_DAY5 = IT_TEMP-F_KAPBD_DAY5 + AUX_KAPBD.
    IT_TEMP-F_KEINH_DAY5 = IT_KBED_KAKO-KEINH.
    WHEN AUX_DAY4.
    AUX_GSMNG = IT_PLAF-GSMNG.
    IT_TEMP-F_GSMNG_DAY4 = IT_TEMP-F_GSMNG_DAY4 + AUX_GSMNG.
    IT_TEMP-F_MEINS_DAY4 = IT_PLAF-MEINS.
    IT_TEMP-F_KAPBD_DAY4 = IT_TEMP-F_KAPBD_DAY4 + AUX_KAPBD.
    IT_TEMP-F_KEINH_DAY4 = IT_KBED_KAKO-KEINH.
    WHEN AUX_DAY3.
    AUX_GSMNG = IT_PLAF-GSMNG.
    IT_TEMP-F_GSMNG_DAY3 = IT_TEMP-F_GSMNG_DAY3 + AUX_GSMNG.
    IT_TEMP-F_MEINS_DAY3 = IT_PLAF-MEINS.
    IT_TEMP-F_KAPBD_DAY3 = IT_TEMP-F_KAPBD_DAY3 + AUX_KAPBD.
    IT_TEMP-F_KEINH_DAY3 = IT_KBED_KAKO-KEINH.
    WHEN AUX_DAY2.
    AUX_GSMNG = IT_PLAF-GSMNG.
    IT_TEMP-F_GSMNG_DAY2 = IT_TEMP-F_GSMNG_DAY2 + AUX_GSMNG.
    IT_TEMP-F_MEINS_DAY2 = IT_PLAF-MEINS.
    IT_TEMP-F_KAPBD_DAY2 = IT_TEMP-F_KAPBD_DAY2 + AUX_KAPBD.
    IT_TEMP-F_KEINH_DAY2 = IT_KBED_KAKO-KEINH.
    WHEN AUX_DAY1.
    AUX_GSMNG = IT_PLAF-GSMNG.
    IT_TEMP-F_GSMNG_DAY1 = IT_TEMP-F_GSMNG_DAY1 + AUX_GSMNG.
    IT_TEMP-F_MEINS_DAY1 = IT_PLAF-MEINS.
    IT_TEMP-F_KAPBD_DAY1 = IT_TEMP-F_KAPBD_DAY1 + AUX_KAPBD.
    IT_TEMP-F_KEINH_DAY1 = IT_KBED_KAKO-KEINH.
    WHEN AUX_TDAY.
    AUX_GSMNG = IT_PLAF-GSMNG.
    IT_TEMP-F_GSMNG_TDAY = IT_TEMP-F_GSMNG_TDAY + AUX_GSMNG.
    IT_TEMP-F_MEINS_TDAY = IT_PLAF-MEINS.
    IT_TEMP-F_KAPBD_TDAY = IT_TEMP-F_KAPBD_TDAY + AUX_KAPBD.
    IT_TEMP-F_KEINH_TDAY = IT_KBED_KAKO-KEINH.
    WHEN OTHERS.
    AUX_GSMNG = IT_PLAF-GSMNG.
    IT_TEMP-F_GSMNG_BORD = IT_TEMP-F_GSMNG_BORD + AUX_GSMNG.
    IT_TEMP-F_MEINS_BORD = IT_PLAF-MEINS.
    IT_TEMP-F_KAPBD_BORD = IT_TEMP-F_KAPBD_BORD + AUX_KAPBD.
    IT_TEMP-F_KEINH_BORD = IT_KBED_KAKO-KEINH.
    ENDCASE.
    IT_TEMP-F_GSMNG_OUTN = IT_TEMP-F_GSMNG_OUTN + AUX_GSMNG.
    IT_TEMP-F_KAPBD_OUTN = IT_TEMP-F_KAPBD_OUTN + AUX_KAPBD.
    ENDLOOP.
    READ TABLE IT_PLAF INDEX 1.
    MOVE IT_PLAF-MEINS TO IT_TEMP-F_MEINS_OUTN.
    READ TABLE IT_KBED_KAKO INDEX 1.
    MOVE IT_KBED_KAKO-KEINH TO IT_TEMP-F_KEINH_OUTN.
    ENDIF.
    ENDFORM. " GET_FINISHEDGOODS_DATA
    *& Form GET_ACTUAL_MONTH_DATA
    text
    --> p1 text
    <-- p2 text
    FORM GET_ACTUAL_MONTH_DATA .
    CLEAR: AUX_LOW, AUX_HIGH.
    MOVE: '01' TO SO_BUDAT-LOW+6(2),
    SO_BUDAT-LOW TO AUX_LOW,
    '31' TO SO_BUDAT-LOW+6(2),
    SO_BUDAT-LOW TO AUX_HIGH.
    REFRESH IT_MKPF_MSEG.
    CLEAR AUX_MNG.
    SELECT MKPFMBLNR MKPFMJAHR MKPF~BUDAT
    MSEGBWART MSE

    Hi Ramya,
    Your program contains a lot of BIG standard tables, these tables
    usually contain huge amount of data,
    plus you have used SELECT * in many places, try to avoid that and replace with only those field names that are reqd.
    even the joins are on huge tables, performance could improve on those  if you can put some more conditions or keys to the joins to make it more specific.
    even after that if it gives the Runtime Error then you have 2 options:
    1. Ask your Basis to increase Time limit for program executing in foreground.
    2. Execute your program in Background Mode.
    Regards,
    Samson Rodrigues.

  • Green tint to Macbook Pro Retina screen.

    Hello,
    I have a Macbook Pro Retina less than 2 months old, earlier today the screen started to get a green tint on everything. I already attempted adjusting the color profile, which didn't affect the greenness of the screen.
    Thoughts?
    -Peter.

    Ok, the EXACT same thing happened to me, although I sneezed all over the screen (gross) and then wiped it off with a windex covered paper towel. Then followed up with a damp microfiber towel to remove smudges. There was no way that water could have gotten in nor the windex.
    So I raise you this question; did you use a microfiber cloth, and are you in a dry-cold or a dry-hot otherwise low humidity climate.
    The reason I ask, theoretically if you did use a microfiber, had the computer on, and rubbed back and forth across the screen several times, you may have created static electricity, which may have interfered with the screen.
    I found that after doing several power cycles (command+control+p+r+power) the green tint completely disappeared. I also noticed that the cat hair that flies around my house is not sticking to the screen anymore....
    Food for thought
    FYI purchased NOV/2014

  • JavaBeans VS Enterprise JavaBeans

    Hi everyone,
    I hope someone can clarify this little problem for me. I am a starting developer with the J2EE technology. I am impressed what it is capable of and I want to continu my study in it. I have been using JavaBeans for a while now and I have noticed that in the J2EE design, there is almost no word about the place of javabeans. Is it that javabeans should be completely replaced by Enterprise Beans or not?
    Does a EJB have every advantages that a javabean has?
    I hope someone can help me with an answer.
    Thx a lot...

    Hi everyone,
    I hope someone can clarify this little problem for me.
    I am a starting developer with the J2EE technology. I
    am impressed what it is capable of and I want to
    continu my study in it. I have been using JavaBeans
    for a while now and I have noticed that in the J2EE
    design, there is almost no word about the place of
    javabeans. Is it that javabeans should be completely
    replaced by Enterprise Beans or not?
    Does a EJB have every advantages that a javabean has?
    I hope someone can help me with an answer.
    Thx a lot...Well, I guess somebody has to explain it to you :D - so, here it goes
    A java bean is a configurable component (you know the story about accessors and mutators, dont you) EJBs are same and that is precisely where all the similarities end. EJBs run in a container i.e. their life cycle is controlled by an external entity, beans also can be the same way. However, if you want to learn EJB, start with Servlet to understand what containers are actually and how do they operate and behave and how they interface with servlets - EJB after that will be a cake-walk (though a bit restrictive) :D
    [email protected]

  • Negative Qty has genereted in 914 even though I've enough stock is available

    Hi Every Body,
    When I confirm the Production Order, system has generating the negative stock in 914 even though I've enough stock.
    Scenario :- I've total 100 qty in my bin out of 100, I've set 20 qty as Blocked qty. when confirm the PO with 50 qty system generates the negative stock which I don't want to happen,  My question is why system is creating negative qty even though I've enough qty(80) to consume.
    Please help me...
    // Nagesh

    Hello Nageswararao,
    If you wanted to confirm from a particular bin, then you need to do following setting.
    1 Enable WM-PP Interface active.
    2 Update all your production Order item level - Supply Area & Storage Location.
    3 Create Control Cycles using LPK1/LPK2/LPK3 for the Supply Area/Material/Plant Combination.
    4 Enable back-flush in BOM/Material level
    In your case, you have missed the control cycles. Control Cycle is the one which supplies the Production Bin from where the stock needs to be consumed. Hope, This is should solve your problem.
    In future, any WM related questions, please do post in Logistics General(Previously Warehouse Management) Forum.
    Regards,
    Sathish

  • Commutatio​n with 6280 DAQ Card

    Hello,
    I want to perform parameter identification of a three phase brushless DC servo motor. Basically I want to obtain mass moment of inertia, viscous damping coefficient and coulomb friction at the bearing. To do so, I plan to apply a step voltage input to the motor terminals and collect the position information with a DAQ card. I know the inductance and resistance values of the motor windings as well as the I want to perform parameter identification of a three phase brushless DC servo motor.
    Basically I want to obtain mass moment of inertia, viscous damping coefficient and coulomb friction at the bearing.
    To do so, I plan to apply a step voltage input to the motor terminals and collect the position information with a DAQ card.
    I know the inductance and resistance values of the motor windings as well as the torque constant of the motor.
    So when I apply a step voltage input to the terminals of the motor, I would know the torque that is applied.
    And since I know the torque that is applied and also collect the position data I would be able to plot torque vs. position curve and would be able to obtain the necessary parameters from this graph.
    My problem is; I don't know how i can apply a step voltage input to a three phase brushless DC motor.
    Is it possible to use a DAQ card (I have a PCI 6280 DAQ card) for commutation? If it's possible is there an example about commutation of brushless dc motor?
    I don't want to use a motion control card to perform the commutation since I want to observe the motor dynamics only.
    Regards.

    Hello,
    for commutation you need to synchronize the output signals to the absolute rotational position of your motor. Typically this is done by implementing a lookup table to output values according to the motor's angle of rotation. This operation requires deterministic real-time behavior, so you could use a DAQ board with LabVIEW Real-Time, but for your application an FPGA-based R-Series device is probably a much better choice.
    Instead of generating analog output signals, with an R-Series device you could directly generate PWM signals with sinusoidal duty cycles to control an external FET amplifier.
    Here you can find example code for such a setup.
    I hope this helps.
    Kind regards,
    Jochen Klier
    National Instruments

  • Actual Activity allocation and Planned and actual activity comparison issue in Product Costing

    Friends,
    I have tried to explain the issue i am facing currently under Product Costing......
    1.Cost Component Structure
    10 – Material
    20 – Labour
    30 – Diesel
    40 – Electricity
    2.KP26 – Planned under Fixed Price
    Labour – 2.0 HR
    Diesel – 1.0 HR
    Electricity – 5.0 HR
    3. When I run CK11N system collecting correct rates for all activities (Costing Lot Size- 1)
    Like;
    1              E              LAB10    994310                  2.00        2.00        AED        1.0          HR Labour Cost New
    2              E              DIE20    994320                  5.00        5.00        AED        1.0          HR Diesel Cost New
    3              E              ELE30    994330                  1.00        1.00        AED        1.0          HR Electricity Cost
    4              M            1100000042                          5.00        0.00        AED        1              PC RAW MATERIAL BAKERY CONSUMED
    5              G            994201                                0.00        0.00        AED                        Depriciation Cost
    6              G            994202                                0.00        0.00        AED                        Sales & Distribution Cost
                                                                              13.00                    AED       
    4.When I do process order Cost analysis for the produced goods it shows me different figures as my
    BOM – RM is 1100000042 1 Quantity
    Routing – All activity time is 1 Hr
    40002                    RAW MATERIAL BAKERY CONSUMED          1005/1100000042            5.00
    40015                    COST OF GOODS MANUFACTURED              1005/4400000071            13.00-
    994310                  Labour Cost New                                              CBAKYPDDXB/LAB10      1.33
    994320                  Diesel Cost New                                              CBAKYPDDXB/DIE20      3.33
    994330                  Electricity Cost                                                CBAKYPDDXB/ELE30      0.67
                                                                                                                                              2.67- AED
    Note :- As per my understanding it should be
        Labour Cost New                                            2.00
                    Diesel Cost New                                              5.00
                    Electricity Cost                                                1.00
    5.Now after Process Order confirmation
    40002                    RAW MATERIAL BAKERY CONSUMED          1005/1100000042            5.00
    40015                    COST OF GOODS MANUFACTURED              1005/4400000071            00.00
    994310                  Labour Cost New                                              CBAKYPDDXB/LAB10      4.00
    994320                  Diesel Cost New                                              CBAKYPDDXB/DIE20      5.00
    994330                  Electricity Cost                                                CBAKYPDDXB/ELE30      2.00
                                                                                                                                              16.00
    6.For Month end actual Activity calculation and load the activaty actual rates on product
    I have configured the system in below manner
    1 Work center = Mapped to 1 Production Cost center
    Three Different Activities mapped to Secondary Cost Element with 43 Category
    For Electrictity Activity assesment from Primary to secondary 1 more cost element created with
          Category 42 Like; 994215-Electricity Cost All
    One Actual Assessment has been configured to allocate Electricity cost from Primary Cost element to
          Product/Order
    7.Assessment Cycle Details
    Controlling Area      1000 Controlling Area
    Cycle                ZELE01                  Status    Reviewed
    Start Date 01.01.2014  To  31.10.2014
    Text                  Elec. Cost Allocation to PROD
    IND- Interactive
    Assessment CEle       994215      Electricity Cost All
    Sender
    Cost Center    CBAKYDXBAD
    Cost Element 40204
    Receiver
    Cost Center    CBAKYPDDXB
    Tracing Factor
    Var.portion type – Actual Activity
    Selaction Criteria
    Activity Type - ELE30
    Receivers Tracing Factor
    Cost Ctr Factor per        100
    CBAKYPDDXB 100
    8.I have received the actuall electricity bill for 1100 AED and the same has accocated through KSU5
    After Cycle run when I follow below procedure
    KSS2 Actual cost splitting
    CBAKYPDDXB                    Production Dxb                LAB01                    183.33
    CBAKYPDDXB                    Production Dxb                DIE02                    183.33
    CBAKYPDDXB                    Production Dxb                ELE03                    183.33
    CBAKYPDDXB                    Production Dxb                DIE20                    183.33
    CBAKYPDDXB                    Production Dxb                ELE30                    183.33
    CBAKYPDDXB                    Production Dxb                LAB10                    183.35
                                                                                                                    1100.00
    Issue – System Split Electricity cost between all the activities assigned to Workcentres Cost Centre.
    But I want to post that cost only to ELE30 Activity and not for all
    When I RUN KSSI for actual Price determination system shows
    OTy        Object                                  Name                  AUn                Act Qty      Total price    Price (Fixed)              PUnit
    ATY        CBAKYPDDXB/DIE20        Production Dxb      HR                  5.0          366.66                  366.66                    10
    ATY        CBAKYPDDXB/ELE30        Production Dxb      HR                  2.0          916.65                  916.65                    10
    ATY        CBAKYPDDXB/LAB10        Production Dxb      HR                  2.0          916.75                916.75                    10
                                                                                                                                                          2200.06
    2200.06 is almost double than 1100.00 which is actual electricity cost and the same is actually determined for all the activities.
    After revaluation of the process order system posting below values
    40002                    RAW MATERIAL BAKERY CONSUMED          1005/1100000042                            5.00        5.00
    40015                    COST OF GOODS MANUFACTURED              1005/4400000071                            13.00-    13.00-
    994310                  Labour Cost New                                            CBAKYPDDXB/LAB10                      1.33        183.35
    994320                  Diesel Cost New                                              CBAKYPDDXB/DIE20                      3.33        183.33
    994330                  Electricity Cost                                                CBAKYPDDXB/ELE30                      0.67        183.33
                                                                                                                                                              2.67-      542.01
    Production Variance is posted as 542.01….
    I strongly believe there is some issue in configuration for activity allocation….
    Main issue is
    Point No. 4 – Different Figures in Process Order Cost Analysis
    Point No. 7 – Assessment cycle run
    Point No. 8 – KSS2 and KSII for Actual cost Allocation and Production variance…
    Friends… I have tried to explain maximum please help me to understand the concept or missing configuration/Process.
    Thanks
    Sagar Chinchkar

    Dear Rajneesh,
    I have made the changes as suggested....
    It seems now my Order Cost analysis and Product cost analysis are showing the same figures.
    I have also maintained cost center splitting structure for ELE30 Activity allocation.
    Structure Z1
    Splitting structure for AT
    Assignment 10
    Electricity Cost
    100
    Allocation for ELE
    Cost Element
    994215
    Activity Type
    ELE30
    Splitting Rule
    100
    Allocation for ELE
    12
    Activity quantity
    Version 0
    In my case actual activity confirmed is 3.1 for 2 orders in period 5
    Order 1 - QTY 2
    Order 2 - QTY 1.1
    Total actual Electricity exp is 1150 in period 5
    followed procedure to post actual activity on product is mentioned below
    KSS2 Actual cost splitting - Result as expected 1150 for ELE30
    KSII Actual price determination - Result as expected 3.1 actual confirmed QTY for ELE30 with actual price
           QTY 3.1         Tot Price 3,709.68        Planned(FIX) 3,709.68     Per Units 10
           (System is doing 1150/3.1*10=3709.68)
        3.CON2 Actual revaluation of orders
          Here while reevaluating the Process Orders system calculation is different
    Order 1 - QTY 2 -   558.00
    Order 2 - QTY 1.1 - 407.56
    Total -                    965.57
         4. After CON2 system is changing the value of other activities like
         LAB10 - Actual confirmed Value 10  to 0 
         DIE20 - Actual  confirmed Value 10  to 0
    Which should not be the case....
                                                                                                                  PL     Act     Var
    40002
    RAW MATERIAL BAKERY CONSUMED
    1005/1100000042
    10.00
    15.00
    50.00
    40015
    COST OF GOODS MANUFACTURED
    1005/4400000074
    26.00-
    26.00-
    994201
    Depriciation Cost
    WMBDDEP01
    1.00
    0.00
    100.00-
    994202
    Sales & Distribution Cost
    WMBDS&A01
    1.00
    0.00
    100.00-
    994310
    Labour Cost New
    CBAKYPDDXB/LAB10
    4.00
    0.00
    100.00-
    994320
    Diesel Cost New
    CBAKYPDDXB/DIE20
    10.00
    0.00
    100.00-
    994330
    Electricity Cost
    CBAKYPDDXB/ELE30
    2.00
    408.06
    20,303.00
    If we want to just post Electricity cost based on actual Electricity expenses and Labor and Diesel are based on planned activity rates.
    What setting is required in current system.....
    Million thanks in advance....
    Regards
    Sagar Chinchkar

  • Kanban barcode

    Hi,
    I have a problem with barcode kanban.
    I would like to create a production order  through Barcode kanban.
    I get this error "No control cycle or kanban could be determined for the data specified"
    what can I do to customise the system so that it's work.
    thanks
    Derval

    Hi Dade,
    For Kanban u have to create the control cycle and all other kanban settinngs like supply area,demand area,supply cle ,demand cycle.
    Control cycle is one of the master data for KANBAN along with supply area and replinesment strategy. In control cycle you will define the calculation and the replinsment stretegy for the material
    Supply source view ( PK12N) and you can see the container here with emty status which trigers the procurement or in MD04 for the replenishment elements like Planned orders or stock transport order or schedule lines according to you configuration of replenishment strategy in the control cycle
    Please go through the link for more details,
    [Kanban|http://help.sap.com/saphelp_46c/helpdata/en/cb/7f8a2943b711d189410000e829fbbd/frameset.htm]
    Rewrard your points if it helps
    Regards,
    R.Brahmankar

  • Forum Find for 2009-April-22 Happy Earth Day!

    Check out how BestBuy.com customers are rating our latest "Forum Find" for ENERGY STAR Qualified washers!
    LG - 3.6 Cu. Ft. 5-Cycle Washer - White
    Model: WM2016CW | SKU: 8247569
    ENERGY STAR Qualified
    The abundant settings on this washer let you customize each cycle for
    specific fabric types, so your clothes will maintain colors with
    reduced wear. The front load design is easy to load and unload, and the
    glass door with silver trim adds style to your laundry room.
    LoDecibel operation; Dial-A-Cycle controls; SenseClean system; end-of-cycle beeper; control lock
    4.8 of 5 (94 reviews)
    As of 4-21-2009 11:59 PM CDT
    *Information is current as of this posting and subject to change without notice. Opinions are exclusive to original author of rating post. Product availability may vary without guarantee of stock. Pedestal sold separately.
    Do you like this Forum Find? Click on Kudos to the right!
    Matthew|Community Advocate | Best Buy® Corporate
    Visit our Channel on
     Private Message

    Need a hard drive to go with this?  Check out last week's Forum Find at:
    http://forums.bestbuy.com/bb/board/message?board.i​d=Computers_New&thread.id=4681
    Matthew|Community Advocate | Best Buy® Corporate
    Visit our Channel on
     Private Message

  • Problem with two parallel While loops

    I have a serious problem with controlling two parallel While Loop. Here is the deal:
    I have written a VI to send a series of commands called Cycle through Serial Port to a custom hardware. One of these commands is setting motor pressure by sending it's command and changing it's voltage. After setting desired pressure I have to read and control motor pressure, again through serial port in a parallel loop. There is a Pressure Sensor in system and I can obtain current's motor pressure by sending a command and receiving pressure value. In the first While loop I send some commands to hardware including Pressure Setting Command trough a state machine. In the second While Loop I read pressure value and then decide to increase motor voltage or decrease  it. Now the problem is in communicating these two loops. In cycle after "Init" state when state reaches "Pressure 2 Bar" motor voltage will increase. Meanwhile I have to control this voltage in parallel While Loop. As you can see I used Local Variable to communicate between these two loops. The problem is that loops are not synchronized. Specially when I switch to "Pressure 3.8 Bar" state during cycle running control loop (second while) is still working based on "Pressure 2 Bar" state not 3.8 bar. Because of this motor pressure goes to 3.8 bar for a sec (becuase of  "Pressure 3.8 Bar" state) and comes back to 2 bar (because the second while still has not gotten that new state,most probably cause of all the delays in the loop)  and after couple seconds it goes back to 3.8 bar.
    I really don’t know what to do. Is there a way to fix this? Or I should consider a better way to do this?
    I went through Occurrence Palette but couldnt figure out how to embed that in the VI. 
    Sorry for my poor English. I attached VI and it's subVIs as a LLB file. I can explain more details if somebody wants. 
    Attachments:
    QuickStartCycle.llb ‏197 KB

    I make it a point to NEVER have a WAIT function inside a state machine.
    It sort of defeats the purpose, which I define as "Examine current state; decide whether you've met the conditions to advance to another state, then get out".
    For example, I have a single state machine VI controlling four identical instruments, via TCP connections.
    For some functions, that means issuing a command, waiting 60 seconds, then reading results.
    If I waited INSIDE the state machine, then it's tied up waiting on one device and cannot handle any others.
    Not a good plan.
    To handle this, I have a loop which calls the state machine.  After issuing the command, the state goes to "Waiting on Response", and there is a target time of 60 seconds from now.
    It's called over and over in that state, and each time merely compares NOW to the target time.  If NOW is past the target, then we read the results.
    the state machine can tell the caller when to call back; that's how I distinguish between an urgent need and nothing-to-do.
    By having the CALLER do the waiting, instead of the state machine itself, the state machine is free to handle another device, or do something else on the same device.
    You should be calling the state machine over and over and over anyway.  So, have the state machine "control the pressure" on every call, and THEN examine whatever state it's in.
    Steve Bird
    Culverson Software - Elegant software that is a pleasure to use.
    Culverson.com
    Blog for (mostly LabVIEW) programmers: Tips And Tricks

Maybe you are looking for

  • Mavericks download doesn't works for me.

    Hello, I been trying to download Mavericks 10.9.4 from Apple store, but doesn't work. Over and over again that i try to download it, shows an error, this one: I have a Mackbook white unibody from 2010 with Snow Leopard 10.6.8 Can anybody help me upgr

  • How to transfer photo file from iMac to flash drive

    Transfer Iphoto file to flashdrive

  • Grey screen

    I went to restart my 3 week old iMac after and update, and the screen scrolled down in grey with hold the power button to turn off, then turn it back on again, in 5 languages. I did this and all you would get is the white screen, the chime and the Ap

  • Help on connecting to laptop

    I just got this new windows 8 laptop and when i try to add my HP Officejet 4500 G510n-z printer wireless, and it wont work, like its say cant find printer

  • Problem while trying to log in as ADMIN after new installation of Apex 3.2

    Dear Apex experts, I have a strange problem with my Apex installation. I installed Apex 3.21 by previosly deleting my former apex version with apxsremov and executing the apexinst skript. That script runs fine but during validation it throws out the